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1 Introduction to the Series

Reasoning with data requires, among other things, producing and accurately interpreting the
output of statistical analyses. That is, effectively using data to draw accurate conclusions -
therein informing research and practice - requires knowing how to analyze your data, how to
get your statistical software to run the appropriate analysis, and how to correctly interpret
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the output. To this end, myriad books are available to learn how to model your data and
how to produce and interpret your output. For instance, Tabachnick and Fidell (2021) present
different ways to model multivariate data using SPSS. Likewise, Field, Miles, and Field (2012)
similarly show readers how to understand and produce statistical analyses using R.

Given these different resources, it is reasonable to ask why this book series is even necessary.
In some ways, it isn’t–a reader of this book series can easily gather the information contained
within these books across other resources. The main impetus for this series is not to replace
these other books–indeed, these other sources provide rich detail that this book series inten-
tionally does not. Instead, the goal of this book series is to provide readers with a set of
resources to facilitate transitioning to using R to run their statistical analyses, and to collect
these in one location–this book series.

To this end, this book series intentionally does not discuss issues of when to use which modeling
approach. Rather, it focuses on helping readers already familiar with the theoretical aspects
of data modeling use R (R Core Team, 2022) to model their data. You can think of it as the
answer to the question: “How do I get R to run a [INSERT YOUR FAVORITE STATISTICAL
ANALYSIS HERE]1?;” you, the reader, already knows what you’d would like R to do, but
need to know how to get R to do it.

Likewise, this book series intentionally excludes in depth discussions on interpreting output.
Again, I assume you are familiar with how to interpret the output of “a [YOUR FAVORIATE
STATISTICAL ANALYSIS HERE]2.” You just need to learn how to get R to run it. In this
way, this book series is directed at readers who know what they want to run and how to
understand the output, but not in R. If you, as a reader, do not count yourself as part of this
group of readers (i.e., you are still unsure about how to model data, or how to interpret the
output of data), you may want to consider a different resource for learning R.3 For the others,
this series should, hopefully, get you over the hurdle of using R.

This book series is three volumes. Volume I, Using R: Introduction and Univariate Statisti-
cal Analyses, presents readers with an introduction to R as a software and language, basic
operations in R, and then how to use R to run simple univariate statistical analyses (e.g.,
central tendency, variability, t-tests, etc.). Volume II, Using R: Multivariate Statistical Anal-
yses, shows readers how to use R to run different multivariate and advance data modeling
methods (e.g., moderated regression analysis, structural equation models, multilevel models,
etc.). Volume III, Using R: Psychometrics Analyses, presents readers with information on how

1You have a favorite, right? If you don’t, you should. Which analysis gets your most excited to think about?
That’s your favorite! Figure that out, and get it tattooed on your body! (Maybe not that, unless tattoos
are your thing. In that case, have at it! Certainly a lower back tattoo of the General Linear Model would
be very popular, no?)

2Look, if you have a favorite statistical analysis and you don’t know how to interpret it, what are we doing
here? Why would you tattoo something on your body that you don’t know how to read!?!?

3For these readers, I recommend the book by Field and colleagues (2012). It is the book I used to teach myself
how to use R. Also, yes, not every footnote in this book series is a bad joke, most of them actually provide
important information. Whether or not a footnote has important information can’t be known until you read
it–therefore, you have to read all of my bad jokes. You’re welcome, and I’m sorry.
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to use R to run different psychometrics models (e.g., Cronbach’s 𝛼, Generalizability theory,
Item Response Theory, etc.).4

One last note before transition to this specifics volume: Practicing using R is of paramount
importance. Like any skill, your facility with R will improve the more you use it and practice
(yes, we’re talkin’ ’bout practice!). It’s important to stick to using R even when it gets painful.
But, as Tony “Duke” Evers told Rocky Balboa before the start of the third round of his fight
with Ivan Drago: NO PAIN!

2 Introduction to this Volume

My partner, a developmental psychologist and gifted scholar, once mentioned to me that
getting started in R is hard because it’s not clear how to do some of the most basic things that
SPSS makes very easy with the point-and-click interface. Indeed, I struggled mightily with
initially using R because I couldn’t even figure out how to get my data set into R, let alone
figure out how to manipulate and analyze it.

Volume I of this book series addresses a lot of these initial hurdles that people face when
they want to switch from an existing software (e.g., SAS) to R. The steps and operations
outlined in this document represent some of the initial issues that researchers have faced when
switching to R (admittedly, based on my experiences and conversations). This includes things
like understanding R is both a software and language. Being that it’s a language, like all
languages, it has its own rules that have to be followed. In addition, we’ll cover how to install
R, and how to work with R as an object based program.

Following this initial information, we will cover how to load data into R, and then some
basic operations to use on your data once it’s in R. Finally, this volume discusses how to
get R to produce some basic univariate statistics. This includes measures of central tendency
and variability, as well as the output of basic statistical models like t-tests, correlations and
regression, 𝜒2, and Analysis of Variance (ANOVA).

2.1 What is R?

Before using R, it is relevant to discuss a little about what R is as a program. In fact, it is
somewhat inaccurate to call R just a program; indeed, R is a programming language. This
means that learning R is like learning a new language with its own syntax, structure, and rules.
This is usually what makes learning R – or any computer language – particularly challenging
for most people. Learning R has many benefits that, although you may not see right away, can
aide in your research and practice beyond just computing correlations and t-values. Learning

4I remind readers here, as I will throughout the books, that interpretation of the output is purposely limited
in this book series. The books are intended to simply help readers produce output using R to facilitate
transitioning from using other software programs (e.g., SPSS) to using R.
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to program in R means you can use R to do all sort of other things like scrap text, pull data
from webpages into a database, simulate data, and much more. Also, learning to code in R
can help you develop skills for coding in other programs whose rules might be different, but
easily learned once you know R (e.g., Python). In addition, the R users community is extensive
with contributions from disparate fields of study. This means that you can get lots of help
with issues you face, and that researchers are continuously adding to the library of packages
available in R.

2.1.1 R as Object Based

One important thing to know about R is that R is an object-based environment. This means
that if an R user wants to store something in the R environment to review later, manipulate,
or use in subsequent operations, they will have to store it as an object.

For example, if I ran the following R code to read in a data file (i.e., open a data set to analyze)
as it is written: read.csv("BBall 22-23 Working.csv", header=TRUE), R would just print
on the screen an N x k matrix of data, where N is the number of rows (e.g., participants in a
study) and k is the number of columns (e.g., variables collected) in the data set—in this case
a 470 x 27matrix, but I’ve truncated it to be only the first 10 rows and first 10 columns.

read.csv("BBall 22-23 Working.csv", header=TRUE)[1:10,1:10]

Rk Player Pos Age FcBc Tm Conf G GS MP
1 81 Clint Capela C 28 FC ATL 1 65 63 26.6
2 372 Onyeka Okongwu C 22 FC ATL 1 80 18 23.1
3 96 John Collins PF 25 FC ATL 1 71 71 30.0
4 213 Aaron Holiday PG 26 BC ATL 1 63 6 13.4
5 276 Vit Krejci PG 22 BC ATL 1 29 0 5.7
6 536 Trae Young PG 24 BC ATL 1 73 73 34.8
7 105 Jarrett Culver SF 23 FC ATL 1 10 1 13.7
8 182 AJ Griffin SF 19 FC ATL 1 72 12 19.5
9 224 De'Andre Hunter SF 25 FC ATL 1 67 67 31.7
10 244 Jalen Johnson SF 21 FC ATL 1 70 6 14.9

Although R would print the matrix, you would not be able to run any statistical analyses on
it because it’s not stored as an object in the R environment.

Instead, if I ran

Data <- read.csv("BBall 22-23 Working.csv", header=TRUE)
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R would store the N x k matrix as an object named Data that I could refer to later as a data
frame on which I can perform operations (e.g., analyze the data). In other words, by storing
the data set as an object, it is stored in the R environment to be used later. Because it’s
stored as an object, for instance, running head(Data) prints the first six rows of data:

head(Data)

Rk Player Pos Age FcBc Tm Conf G GS MP FG FGPerc X3P X3Perc X2P
1 81 Clint Capela C 28 FC ATL 1 65 63 26.6 5.4 0.653 0.0 0.000 5.4
2 372 Onyeka Okongwu C 22 FC ATL 1 80 18 23.1 4.0 0.638 0.1 0.308 3.9
3 96 John Collins PF 25 FC ATL 1 71 71 30.0 5.1 0.508 1.0 0.292 4.1
4 213 Aaron Holiday PG 26 BC ATL 1 63 6 13.4 1.5 0.418 0.6 0.409 0.9
5 276 Vit Krejci PG 22 BC ATL 1 29 0 5.7 0.5 0.405 0.2 0.238 0.3
6 536 Trae Young PG 24 BC ATL 1 73 73 34.8 8.2 0.429 2.1 0.335 6.1
X2Perc FT FTPerc ORB DRB TRB AST STL BLK TOV PF PTS

1 0.654 1.2 0.603 4.0 7.1 11.0 0.9 0.7 1.2 0.8 2.1 12.0
2 0.647 1.9 0.781 2.7 4.5 7.2 1.0 0.7 1.3 1.0 3.1 9.9
3 0.619 2.0 0.803 1.1 5.4 6.5 1.2 0.6 1.0 1.1 3.1 13.1
4 0.424 0.4 0.844 0.4 0.8 1.2 1.4 0.6 0.2 0.6 1.3 3.9
5 0.625 0.0 0.500 0.2 0.7 0.9 0.6 0.2 0.0 0.2 0.6 1.2
6 0.476 7.8 0.886 0.8 2.2 3.0 10.2 1.1 0.1 4.1 1.4 26.2

Importantly, there are some operations you will run in R that will not require assigning the
operation to an object. For example, you don’t need to define an object for setting a working
directory,

setwd("C:/Users/devda/Desktop/Using R")

installing packages,

install.packages("psych", dependencies=TRUE)

loading packages (all discussed in further detail below)

nor asking for the first six rows of data (which is a great way to check if your data sets loaded
correctly):

head(Data)

Rk Player Pos Age FcBc Tm Conf G GS MP FG FGPerc X3P X3Perc X2P
1 81 Clint Capela C 28 FC ATL 1 65 63 26.6 5.4 0.653 0.0 0.000 5.4
2 372 Onyeka Okongwu C 22 FC ATL 1 80 18 23.1 4.0 0.638 0.1 0.308 3.9
3 96 John Collins PF 25 FC ATL 1 71 71 30.0 5.1 0.508 1.0 0.292 4.1
4 213 Aaron Holiday PG 26 BC ATL 1 63 6 13.4 1.5 0.418 0.6 0.409 0.9
5 276 Vit Krejci PG 22 BC ATL 1 29 0 5.7 0.5 0.405 0.2 0.238 0.3
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6 536 Trae Young PG 24 BC ATL 1 73 73 34.8 8.2 0.429 2.1 0.335 6.1
X2Perc FT FTPerc ORB DRB TRB AST STL BLK TOV PF PTS

1 0.654 1.2 0.603 4.0 7.1 11.0 0.9 0.7 1.2 0.8 2.1 12.0
2 0.647 1.9 0.781 2.7 4.5 7.2 1.0 0.7 1.3 1.0 3.1 9.9
3 0.619 2.0 0.803 1.1 5.4 6.5 1.2 0.6 1.0 1.1 3.1 13.1
4 0.424 0.4 0.844 0.4 0.8 1.2 1.4 0.6 0.2 0.6 1.3 3.9
5 0.625 0.0 0.500 0.2 0.7 0.9 0.6 0.2 0.0 0.2 0.6 1.2
6 0.476 7.8 0.886 0.8 2.2 3.0 10.2 1.1 0.1 4.1 1.4 26.2

You can also print descriptive statistics if you don’t want to save them. Specifically,

Descriptives <- describe(Data)

will run the describe() function from the psych package (Revelle, 2023) on all of the variables
in the data frame named Data, but store the descriptive statistics in the object Descriptives.
In order to view them you have to call the object Descriptives:

Descriptives

vars n mean sd median trimmed mad min max range skew
Rk 1 470 264.65 155.87 266.50 264.05 197.19 1.00 539.00 538.00 0.02
Player* 2 470 235.50 135.82 235.50 235.50 174.21 1.00 470.00 469.00 0.00
Pos* 3 470 3.04 1.47 3.00 3.06 1.48 1.00 5.00 4.00 -0.03
Age 4 470 25.84 4.33 25.00 25.52 4.45 19.00 38.00 19.00 0.58
FcBc* 5 470 1.59 0.49 2.00 1.61 0.00 1.00 2.00 1.00 -0.37
Tm* 6 470 17.65 9.40 18.00 18.05 13.34 1.00 31.00 30.00 -0.21
Conf 7 470 1.72 0.70 2.00 1.65 1.48 1.00 3.00 2.00 0.45
G 8 470 54.37 19.55 59.00 55.91 22.24 10.00 83.00 73.00 -0.56
GS 9 470 26.12 27.74 12.00 23.24 17.79 0.00 83.00 83.00 0.66
MP 10 470 21.07 9.01 20.20 21.09 11.19 2.50 37.40 34.90 0.04
FG 11 470 3.62 2.43 3.00 3.31 1.93 0.20 11.20 11.00 1.05
FGPerc 12 470 0.47 0.08 0.46 0.46 0.06 0.15 0.82 0.67 0.70
X3P 13 470 1.06 0.88 0.90 0.96 0.89 0.00 4.90 4.90 0.99
X3Perc 14 462 0.33 0.11 0.35 0.34 0.06 0.00 1.00 1.00 -0.37
X2P 15 470 2.56 2.00 1.90 2.28 1.48 0.10 10.50 10.40 1.32
X2Perc 16 470 0.54 0.08 0.54 0.54 0.07 0.07 0.82 0.75 -0.53
FT 17 470 1.56 1.60 1.00 1.26 0.89 0.00 10.00 10.00 2.12
FTPerc 18 467 0.76 0.12 0.77 0.77 0.11 0.00 1.00 1.00 -1.13
ORB 19 470 0.92 0.75 0.70 0.80 0.59 0.00 5.10 5.10 1.77
DRB 20 470 2.87 1.76 2.50 2.65 1.48 0.20 9.60 9.40 1.21
TRB 21 470 3.80 2.34 3.30 3.48 1.93 0.40 12.50 12.10 1.24
AST 22 470 2.19 1.93 1.40 1.86 1.19 0.10 10.70 10.60 1.62
STL 23 470 0.64 0.36 0.60 0.61 0.30 0.10 1.90 1.80 0.82
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BLK 24 470 0.41 0.39 0.30 0.34 0.30 0.00 3.00 3.00 2.64
TOV 25 470 1.17 0.81 0.90 1.06 0.59 0.00 4.10 4.10 1.21
PF 26 470 1.78 0.72 1.70 1.76 0.74 0.10 3.80 3.70 0.25
PTS 27 470 9.86 6.87 7.95 8.94 5.41 0.40 33.10 32.70 1.16

kurtosis se
Rk -1.20 7.19
Player* -1.21 6.26
Pos* -1.40 0.07
Age -0.44 0.20
FcBc* -1.87 0.02
Tm* -1.30 0.43
Conf -0.91 0.03
G -0.75 0.90
GS -1.18 1.28
MP -1.14 0.42
FG 0.42 0.11
FGPerc 2.03 0.00
X3P 0.92 0.04
X3Perc 6.71 0.01
X2P 1.53 0.09
X2Perc 2.84 0.00
FT 5.41 0.07
FTPerc 3.65 0.01
ORB 4.15 0.03
DRB 1.47 0.08
TRB 1.48 0.11
AST 2.61 0.09
STL 0.35 0.02
BLK 10.08 0.02
TOV 0.94 0.04
PF -0.36 0.03
PTS 0.77 0.32

The following, without defining it as an object, will just print the descriptive statistics on the
screen:

describe(Data)

vars n mean sd median trimmed mad min max range skew
Rk 1 470 264.65 155.87 266.50 264.05 197.19 1.00 539.00 538.00 0.02
Player* 2 470 235.50 135.82 235.50 235.50 174.21 1.00 470.00 469.00 0.00
Pos* 3 470 3.04 1.47 3.00 3.06 1.48 1.00 5.00 4.00 -0.03

7



Age 4 470 25.84 4.33 25.00 25.52 4.45 19.00 38.00 19.00 0.58
FcBc* 5 470 1.59 0.49 2.00 1.61 0.00 1.00 2.00 1.00 -0.37
Tm* 6 470 17.65 9.40 18.00 18.05 13.34 1.00 31.00 30.00 -0.21
Conf 7 470 1.72 0.70 2.00 1.65 1.48 1.00 3.00 2.00 0.45
G 8 470 54.37 19.55 59.00 55.91 22.24 10.00 83.00 73.00 -0.56
GS 9 470 26.12 27.74 12.00 23.24 17.79 0.00 83.00 83.00 0.66
MP 10 470 21.07 9.01 20.20 21.09 11.19 2.50 37.40 34.90 0.04
FG 11 470 3.62 2.43 3.00 3.31 1.93 0.20 11.20 11.00 1.05
FGPerc 12 470 0.47 0.08 0.46 0.46 0.06 0.15 0.82 0.67 0.70
X3P 13 470 1.06 0.88 0.90 0.96 0.89 0.00 4.90 4.90 0.99
X3Perc 14 462 0.33 0.11 0.35 0.34 0.06 0.00 1.00 1.00 -0.37
X2P 15 470 2.56 2.00 1.90 2.28 1.48 0.10 10.50 10.40 1.32
X2Perc 16 470 0.54 0.08 0.54 0.54 0.07 0.07 0.82 0.75 -0.53
FT 17 470 1.56 1.60 1.00 1.26 0.89 0.00 10.00 10.00 2.12
FTPerc 18 467 0.76 0.12 0.77 0.77 0.11 0.00 1.00 1.00 -1.13
ORB 19 470 0.92 0.75 0.70 0.80 0.59 0.00 5.10 5.10 1.77
DRB 20 470 2.87 1.76 2.50 2.65 1.48 0.20 9.60 9.40 1.21
TRB 21 470 3.80 2.34 3.30 3.48 1.93 0.40 12.50 12.10 1.24
AST 22 470 2.19 1.93 1.40 1.86 1.19 0.10 10.70 10.60 1.62
STL 23 470 0.64 0.36 0.60 0.61 0.30 0.10 1.90 1.80 0.82
BLK 24 470 0.41 0.39 0.30 0.34 0.30 0.00 3.00 3.00 2.64
TOV 25 470 1.17 0.81 0.90 1.06 0.59 0.00 4.10 4.10 1.21
PF 26 470 1.78 0.72 1.70 1.76 0.74 0.10 3.80 3.70 0.25
PTS 27 470 9.86 6.87 7.95 8.94 5.41 0.40 33.10 32.70 1.16

kurtosis se
Rk -1.20 7.19
Player* -1.21 6.26
Pos* -1.40 0.07
Age -0.44 0.20
FcBc* -1.87 0.02
Tm* -1.30 0.43
Conf -0.91 0.03
G -0.75 0.90
GS -1.18 1.28
MP -1.14 0.42
FG 0.42 0.11
FGPerc 2.03 0.00
X3P 0.92 0.04
X3Perc 6.71 0.01
X2P 1.53 0.09
X2Perc 2.84 0.00
FT 5.41 0.07
FTPerc 3.65 0.01
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ORB 4.15 0.03
DRB 1.47 0.08
TRB 1.48 0.11
AST 2.61 0.09
STL 0.35 0.02
BLK 10.08 0.02
TOV 0.94 0.04
PF -0.36 0.03
PTS 0.77 0.32

2.1.2 Installing R

The last bit of introduction to R is installing R. Naturally, the first step in using R is to install
R on your computer. Users have two options when picking which type of R to install: Basic R
or RStudio.5 Both R and RStudio offer largely the same functionality, but RStudio has some
advantages. For example, RStudio has more user-friendly displays, and allows you to work
in R Projects and use RMarkdown and Quarto; these latter two options allow for creating
documents and/or webpages that integrate interpretation with analysis. In fact, this book
series was written using Quarto. Which version of R you use is a personal preference, but I
will say that most people like RStudio. In addition, you will need to install the base R even if
you are using RStudio.

To install R, follow the instructions on the following webpage: https://www.r-project.org/.
From here, you will be asked to select a “CRAN Mirror” from which to download R. CRAN
stands for Comprehensive R Archive Network, and this network is a collection of internet
hosts that contain the same information, but allow large numbers of individuals to access R
simultaneously without overloading one server. You usually select a CRAN nearest you. To
install RStudio, you follow the instructions here: https://www.rstudio.com/products/rstudio/
download/.

Having covered some of the initial issues, we can now turn to some of the basic operations
you’ll need to get started with R.

2.2 Basic Operations

In this section, I outline some initial operations that are typically done before any analysis.
These include: setting a working directory, loading data sets into R, and installing and loading
R packages. Admittedly, this section does not cover all of the operations you might need.
Rather, I selected these as these tend to be the ones that most early users need immediately,
with more nuanced or advanced operations (e.g., reshaping data) being needed later. For

5I note that there is also R commander which allows for a point-and-click functionality. This book series does
not consider this option.
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example, nearly everyone will need to know how to set a variable in their data set to a factor
in order to run an ANOVA early in their transition to R. Knowing how to convert a data
set from wide to long format to conduct multilevel modelings, though, is something that new
users need after mastering the initial operations and basic analyses. As such, I demonstrate
these more advanced operations in later volumes of the series.

2.2.1 Setting a Working Directory

A “working directory” is the folder on your computer in which you are going to work. The
reason for setting a working directory is to facilitate opening and saving files. The working
directory you set is going to be the folder in which the data you’re working with is stored.
This is also where your script files will be saved, which you should be saving frequently!

By setting a working directory, you can save yourself the need to include the full path directory
information when trying to read in to or save out of the R environment. For example, if I
needed to read in the above data set before setting a working directory, I would have to write
the following:

Data <- read.csv(“C:/Users/Dev Dalal/Desktop/Using R/BBall 22-23 Working.csv”,
header=TRUE)

And to save something from R to the same folder I would have to write:

write.table(coefficients,“C:/Users/Dev Dalal/Desktopp/Using R/"Descriptive
Statistics.csv", sep=",")

The above line of code will save an object in the R environment I named coefficient as the
file named “Descriptive Statistics.csv” as a comma separated values file in the same folder as
the data.

If I set the working directory from the start, the previous two lines of coding is shortened
considerably . If I set the working directory for the above example as:

setwd(“C:/Users/Dev Dalal/Desktop/Using R/”)

R knows to read all objects from and save all objects to the Using R subfolder of the Desktop6

folder on my computer. Then, to read in the data and/or save the coefficients, I simply need
to code:

Data <- read.csv(“BBall 22-23 Working.csv”, header=TRUE)

write.table(coefficients, “Descriptive Statistics.csv”, sep=”,”)

As you can see, this line of code is significantly shortened because of the setting of a working
directory earlier–something we only need to do once at the start of our code.

6This is for all of your monsters who save everything to your Desktop. It’s just anarchy on that Desktop! It’s
not safe for anyone!
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To set the working directory for a Windows computer, you use the following general code:

setwd(“[DRIVE LETTER]:/Users/[YOUR USER NAME]/[MAIN FOLDER]/[SUBFOLDER 1 (IF
APPLICABLE)/”)

For example:

setwd(“C:/Users/Dev Dalal/Documents/Using R”)

To set the working directory for a Mac, you use the following general code:

setwd(“/Users/[YOUR USER NAME]/[MAIN FOLDER]/[SUBFOLDER 1 (IF APPLICABLE)/”)

For example:

setwd(“/Users/Dev Dalal/Documents/Using R”)

You’ll know you’ve successfully set a working directory if the code runs without an error
message. If you are following along with coding while reading this volume, now would be a
good time to set your working directory before moving forward.

2.2.2 Getting Data into R

After setting a working directory, the next step to analyzing data is actually having data in
R to analyze. There are many ways in which you can have your data saved and read into R.
Naturally, the first way is to input the data yourself; that is, you can enter the data into R
manually. This would work easily if you only have a small amount of data to enter.

The other way is to read in a data set created in some other program. Any text file with any
delimiter (e.g., tab delimited, comma separated values) can be handled by R. A delimiter is a
character that separates values in a file. So, for example, a comma separated values (csv) file
– the type of file used in these volumes – separates the data points using commas.7

2.2.2.1 Inputting Data into R

To input data into R, you have to define the data as an object. Although the following
demonstration is unnecessarily broken into multiple steps, it will help you understand how
data can be entered into R. In the below code, the <- code assigns/stores the vector of numbers
on the right into an object named whatever is to the left of the <-. The c() code tells R to
combine these into a single object of different elements (i.e., numbers). The below code will
create two vectors, Y and X1, with ten entries each:

7You can read directly into your R environment SPSS data files, and .xls/.xlsx, Excel data. However, I have
personally, and have heard from others, that reading in files this way can result in some issues. So, my general
recommendation is to save data files into .csv format. Any existing statistics software (e.g., SPSS, SAS),
spreadsheet application (e.g., Google Sheets, Excel), and survey software (e.g., Qualtrics, SurveyMonkey)
can save data as .csv files with variable names as the first row.
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Y <- c(71, 67, 69, 56, 53, 52, 59, 70, 75, 53)
X1 <- c(16, 18, 30, 18, 24, 12, 30, 32, 26, 14)
Y

[1] 71 67 69 56 53 52 59 70 75 53

X1

[1] 16 18 30 18 24 12 30 32 26 14

To make these two vectors a single data set to analyze, we use the data.frame() function. A
data matrix in R is typically referred to as a data frame; note, though, that some packages
will require data in matrix format–I will point this out as we encounter these situations.

The data.frame() function allows us to specify a new object as a data frame with Y and X1
relabeled “PTG” and “SS,” respectively. We will then have 10 cases on 2 variables in a 10 x
2 data frame.

Example1 <- data.frame(PTG = Y, SS = X1)
Example1

PTG SS
1 71 16
2 67 18
3 69 30
4 56 18
5 53 24
6 52 12
7 59 30
8 70 32
9 75 26
10 53 14

From here, we could start the performance operations on PTG and SS (e.g., correlate them;
print descriptive statistics, etc.).
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2.2.2.2 Loading Data Sets into R

As noted earlier, it is more likely that you will be reading in a data set from an external
source (e.g., Qualtrics, Excel) than inputting your own data. Reading a .csv file into R is
straightforward thanks to the read.csv() function. Furthermore, assuming you have set a
working directory, it just requires the name of the file. Remember, though, that because R
is an object-based language, you have to assign the data to an object; otherwise, R will just
print the data matrix and you won’t be able to do anything with it.

Although we did this earlier, we will read in BBall 22-23 Working.csv again using the
read.csv() function. This is some data from the 2022-2023 season of the National Basketball
Association; we will use this data later to perform some univariate statistics, and I explain
the data in more detail in that section.

Data1 <- read.csv(“BBall 22-23 Working.csv”, header=TRUE)

Note three things with this code. First, the file is being assigned to the object Data1 using
the <- part of the code. Second, header= TRUE tells R that the first row of the file is variable
names. Finally, TRUE is all capitalized. R, like all languages, computer or otherwise, has
specific rules, and one of R’s rules is that commands that require a TRUE/FALSE response must
be all capitalized.

Data1 <- read.csv("BBall 22-23 Working.csv", header=TRUE)

After running this code, you should have a data frame in your R environment named Data1. If
you are using RStudio, the Environment window pane in your interface should show an object
under the Data section named Data1. Alternatively, you can using the objects() function to
print a list of the different objects you’ve defined in your R environment. In addition to the
other objects we’ve defined earlier, your environment should also have an object named Data1
if the read.csv() function worked:

objects()

[1] "Data" "Data1" "Descriptives" "Example1" "X1"
[6] "Y"

Data1 will have 254 cases on 33 variables.

To make sure your data read in correctly, you can print the first and/or last six rows of data
using the head() and/or tail() functions, respectively, including within the parentheses the
name of the data frame object:

head(Data1)
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Rk Player Pos Age FcBc Tm Conf G GS MP FG FGPerc X3P X3Perc X2P
1 81 Clint Capela C 28 FC ATL 1 65 63 26.6 5.4 0.653 0.0 0.000 5.4
2 372 Onyeka Okongwu C 22 FC ATL 1 80 18 23.1 4.0 0.638 0.1 0.308 3.9
3 96 John Collins PF 25 FC ATL 1 71 71 30.0 5.1 0.508 1.0 0.292 4.1
4 213 Aaron Holiday PG 26 BC ATL 1 63 6 13.4 1.5 0.418 0.6 0.409 0.9
5 276 Vit Krejci PG 22 BC ATL 1 29 0 5.7 0.5 0.405 0.2 0.238 0.3
6 536 Trae Young PG 24 BC ATL 1 73 73 34.8 8.2 0.429 2.1 0.335 6.1
X2Perc FT FTPerc ORB DRB TRB AST STL BLK TOV PF PTS

1 0.654 1.2 0.603 4.0 7.1 11.0 0.9 0.7 1.2 0.8 2.1 12.0
2 0.647 1.9 0.781 2.7 4.5 7.2 1.0 0.7 1.3 1.0 3.1 9.9
3 0.619 2.0 0.803 1.1 5.4 6.5 1.2 0.6 1.0 1.1 3.1 13.1
4 0.424 0.4 0.844 0.4 0.8 1.2 1.4 0.6 0.2 0.6 1.3 3.9
5 0.625 0.0 0.500 0.2 0.7 0.9 0.6 0.2 0.0 0.2 0.6 1.2
6 0.476 7.8 0.886 0.8 2.2 3.0 10.2 1.1 0.1 4.1 1.4 26.2

tail(Data1)

Rk Player Pos Age FcBc Tm Conf G GS MP FG FGPerc X3P X3Perc
465 349 Monte Morris PG 27 BC WAS 1 62 61 27.3 4.0 0.480 1.3 0.382
466 532 Delon Wright PG 30 BC WAS 1 50 14 24.4 2.8 0.474 0.8 0.345
467 16 Deni Avdija SF 22 FC WAS 1 76 40 26.6 3.3 0.437 0.9 0.297
468 268 Corey Kispert SF 23 FC WAS 1 74 45 28.3 3.9 0.497 2.2 0.424
469 35 Bradley Beal SG 29 BC WAS 1 50 50 33.5 8.9 0.506 1.6 0.365
470 111 Johnny Davis SG 20 BC WAS 1 28 5 15.1 2.4 0.386 0.6 0.243

X2P X2Perc FT FTPerc ORB DRB TRB AST STL BLK TOV PF PTS
465 2.7 0.543 1.0 0.831 0.4 3.0 3.4 5.3 0.7 0.2 1.0 1.2 10.3
466 1.9 0.564 1.0 0.867 1.2 2.4 3.6 3.9 1.8 0.3 0.9 1.2 7.4
467 2.4 0.530 1.6 0.739 1.0 5.4 6.4 2.8 0.9 0.4 1.6 2.8 9.2
468 1.7 0.637 1.0 0.852 0.4 2.4 2.8 1.2 0.4 0.1 0.7 1.3 11.1
469 7.3 0.552 3.8 0.842 0.8 3.1 3.9 5.4 0.9 0.7 2.9 2.1 23.2
470 1.8 0.485 0.5 0.519 0.4 2.0 2.3 1.0 0.4 0.3 0.6 1.7 5.8

As this point, you should be able to read in any .csv file into R as long as you know in what
working directory it is stored! Once the data are in R, you can start performing operations
with your data.

2.2.3 Installing and Loading Packages

One of the main benefits of using R is that members of the R community have taken the time
to develop packages that have different functions that run different analyses and/or commands.
Using the functions within these packages makes it easier to run all of your analyses because
users do not have to program a function for each thing they want R to do. This is particularly
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helpful for users of R who are interested in producing statistical output. Importantly, if a
package/function to conduct an analysis does not already exist, R can be used to program
this function. If you stick with R long enough, you will find that it’s a very quick transition
from using packages to programming your own functions.

Fortunately, installing and loading packages is straightforward. The code to install a package
is install.packages() and the code to load a package is library(). So, for instance, if we
wanted to install the psych package (Revelle, 2023), we would run:

install.packages("psych", dependencies=TRUE).

Importantly, package developers can, at times, rely on other packages, developed by other
people, to make their package simpler. The dependencies=TRUE part of the code will install
any package on which the needed package depends to run analyses. For instance, the psych
package makes use of the boot package to run some of its analyses–the dependencies=TRUE
part of the install.packages() function will install the boot package as part of installing
psych.

To make the functions within a package available, you have to load the package to your R
environment’s library. To do this, we use the library() function with the name of the package
within the parentheses:

library(psych).

When you install the package, you may notice some warnings telling you about the dependent
packages that were not available. This is okay as they are likely replaced by other packages.
When you load the psych package, you might encounter warning messages. These warnings
can likely be ignored as it simply tells the user that the package was developed under a specific
version of R.

To ensure that the psych package was loaded successfully, you can run the search() function
which will display all packages and tools that are currently active in your R environment.
If your desired package loaded correctly, in this case the psych package, it should show as
package:NAME in the output. As we can see, package:psych is shown among the packages
operating.

search()

[1] ".GlobalEnv" "package:psych" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
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2.2.4 Basic R Commands

Next, we turn to performing some basic operations in R. These operations, though not exhaus-
tive, should set you up well for performing analyses in R.

2.2.4.1 References a Specific Part of an Object

First, referencing a specific part of an object in R is done with the use of the $ sign. For
example, if I wanted to add the data in column 1 to the data in column 2 for each person
(akin to making a scale sum-score for a two-item measure), I would use the $ to reference each
column:

Data1$Column3 <- Data1$Column1 + Data1$Column2

Note that if Column3 doesn’t exist in the data set, R knows to create it, and that the values
will be whatever each row of data has in Column1 added to Column2 data. If Column3 does
exist, though, R will overwrite whatever is in that column, so make sure you are careful about
creating new variables.

Using Data1, you can create the variable NegPlay as the sum of TOV and PF to create. Although
these data are described in further detail below, TOV refers to the average number of times a
player gave the ball away to the opposing team a game, and PF refers to the average number
of fouls a player committed a game. The sum of these two would be, then, the average number
of negative plays the player had in a game during the season.

Data1$NegPlay <- Data1$TOV + Data1$PF

If you were successful, using the head() command, you should see a new variable at the end
named NegPlay.

head(Data1)

Rk Player Pos Age FcBc Tm Conf G GS MP FG FGPerc X3P X3Perc X2P
1 81 Clint Capela C 28 FC ATL 1 65 63 26.6 5.4 0.653 0.0 0.000 5.4
2 372 Onyeka Okongwu C 22 FC ATL 1 80 18 23.1 4.0 0.638 0.1 0.308 3.9
3 96 John Collins PF 25 FC ATL 1 71 71 30.0 5.1 0.508 1.0 0.292 4.1
4 213 Aaron Holiday PG 26 BC ATL 1 63 6 13.4 1.5 0.418 0.6 0.409 0.9
5 276 Vit Krejci PG 22 BC ATL 1 29 0 5.7 0.5 0.405 0.2 0.238 0.3
6 536 Trae Young PG 24 BC ATL 1 73 73 34.8 8.2 0.429 2.1 0.335 6.1
X2Perc FT FTPerc ORB DRB TRB AST STL BLK TOV PF PTS NegPlay

1 0.654 1.2 0.603 4.0 7.1 11.0 0.9 0.7 1.2 0.8 2.1 12.0 2.9
2 0.647 1.9 0.781 2.7 4.5 7.2 1.0 0.7 1.3 1.0 3.1 9.9 4.1
3 0.619 2.0 0.803 1.1 5.4 6.5 1.2 0.6 1.0 1.1 3.1 13.1 4.2
4 0.424 0.4 0.844 0.4 0.8 1.2 1.4 0.6 0.2 0.6 1.3 3.9 1.9

16



5 0.625 0.0 0.500 0.2 0.7 0.9 0.6 0.2 0.0 0.2 0.6 1.2 0.8
6 0.476 7.8 0.886 0.8 2.2 3.0 10.2 1.1 0.1 4.1 1.4 26.2 5.5

The use of the $ will become more valuable when you want to print a specific part of an output.
For example, if we wanted to print the column for the new sum scores we just created, we can
use the $ to call that specific column only:

Data1$NegPlay

[1] 2.9 4.1 4.2 1.9 0.8 5.5 2.1 1.8 4.2 2.2 2.8 1.4 0.2 3.6 2.3 2.5 1.6 2.0
[19] 2.9 3.4 3.1 1.6 5.1 5.5 1.6 0.4 5.1 0.7 3.4 4.1 2.8 1.6 5.6 2.5 4.6 1.8
[37] 2.4 2.1 2.5 2.1 0.3 2.8 3.9 1.7 3.0 3.5 4.6 2.2 3.5 4.6 0.8 2.6 2.1 3.3
[55] 3.1 1.6 4.1 6.9 2.7 3.8 3.4 4.2 2.3 1.9 4.0 3.7 1.7 1.9 4.6 0.8 2.4 5.0
[73] 1.5 2.4 2.7 2.3 1.7 3.9 5.1 2.2 3.7 4.3 1.4 3.0 6.1 1.6 2.6 2.5 3.8 2.3
[91] 2.0 1.2 6.1 3.0 2.0 3.3 2.6 2.6 3.8 1.8 3.9 3.0 0.6 1.8 3.0 0.9 3.0 4.1
[109] 4.1 4.2 2.6 6.1 5.2 2.3 0.6 3.5 3.0 6.5 1.5 1.8 3.2 5.9 2.7 3.7 5.3 5.7
[127] 2.1 0.9 3.1 3.7 4.2 3.4 2.1 1.4 2.4 0.8 6.0 3.5 4.2 2.5 5.8 1.4 2.9 4.9
[145] 1.8 4.3 3.2 3.4 5.2 1.7 2.2 3.7 3.3 2.3 3.7 4.2 4.0 4.1 1.1 4.4 2.5 2.5
[163] 3.0 1.2 4.1 1.5 1.4 5.9 3.3 2.8 3.8 4.8 2.8 4.8 3.9 2.2 1.1 3.2 2.1 4.2
[181] 5.3 2.3 2.7 3.3 1.9 1.7 2.3 0.9 1.3 5.0 4.7 2.1 2.6 4.8 1.1 5.3 2.2 3.1
[199] 2.9 1.5 2.3 2.0 4.5 3.7 3.1 2.5 3.0 3.9 4.5 2.1 4.0 7.0 0.9 1.9 2.8 3.0
[217] 4.6 2.3 1.6 2.8 1.7 4.3 2.6 1.2 2.0 4.7 1.7 4.0 3.6 3.6 6.8 1.5 4.8 0.9
[235] 5.7 1.4 0.7 2.6 1.9 2.1 2.7 2.6 5.1 4.5 5.6 3.3 2.7 1.4 4.4 5.9 2.8 2.8
[253] 0.8 3.4 3.4 2.3 5.8 1.6 4.3 1.3 1.5 4.7 2.5 3.5 3.2 3.1 1.8 4.7 3.0 2.1
[271] 2.7 5.6 2.4 4.5 1.9 1.2 2.4 4.1 4.7 3.6 5.0 2.9 0.9 2.0 4.1 4.5 1.6 2.1
[289] 4.4 2.5 2.2 4.1 6.5 1.9 2.5 2.6 3.0 5.3 3.2 1.7 1.1 3.5 3.8 2.8 1.1 4.6
[307] 2.7 2.7 3.2 4.0 3.5 2.4 5.7 2.7 2.5 2.4 1.8 1.3 3.1 5.9 1.2 4.2 3.0 4.6
[325] 5.2 1.9 1.7 2.2 2.7 4.4 1.5 1.7 6.4 2.3 2.2 1.7 1.3 0.9 4.9 2.2 0.7 2.8
[343] 2.4 0.7 3.7 3.5 3.3 5.2 2.8 2.5 1.7 2.0 4.2 3.0 4.1 2.7 2.7 2.9 2.3 3.0
[361] 3.6 3.0 1.6 2.5 2.4 1.4 5.6 2.4 1.7 0.7 1.7 4.8 5.0 4.2 2.3 2.7 1.6 2.3
[379] 1.5 2.3 2.7 2.5 1.9 0.9 2.0 2.0 2.7 4.2 4.4 3.5 5.4 3.1 1.9 2.9 2.7 1.9
[397] 1.1 3.6 2.7 2.0 1.3 3.6 2.2 1.8 3.2 3.4 2.3 4.6 5.7 1.9 4.9 2.5 2.1 1.5
[415] 4.1 2.0 3.8 1.5 2.3 3.2 3.0 1.0 2.2 2.3 3.4 1.9 2.4 1.9 2.4 2.6 2.4 2.0
[433] 2.2 0.9 1.5 1.8 2.7 1.4 3.1 2.2 1.7 3.7 4.2 1.4 3.1 5.9 1.9 4.0 4.2 4.1
[451] 1.2 2.0 2.4 5.0 3.6 0.9 0.7 3.5 2.2 5.1 2.1 1.5 5.3 2.4 2.2 2.1 4.4 2.0
[469] 5.0 2.3

Importantly, you can use this basic command on any number of columns and/or performing
any mathematical operation. For example, creating a product or polynomial term to use
in moderated multiple regression and/or polynomial regression requires multiplication and
exponentiation, respectively.

Data$Interaction <- Data$Var1 * Data$Var2
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Data$Squared <- Data$Var1^2

The first line creates the product of Var1 and Var2 and names it Interaction in the Data data
frame. The second line creates the variable Squared by squaring Var1. These new variables
can now be used as part of moderated and/or polynomial regression analysis—discussed in
Volume II of this series.

2.2.4.2 Creating Scale Scores from Means

Researchers in the behavioral sciences typically use means of individual item-responses to
index construct standing. That is, rather than using sum scores, they use mean scores to
create scores on measures of study variables. The process, for the most part, is the same for
creating mean scores: you have to tell R that you need a new variable that is the mean of
existing columns of data. The difference is the function to do this directly is rowMeans().
9Note, that the M in rowMeans() is capitalized.) In addition, we have to nest within the
rowMeans() function the cbind() function. The cbind() function tells R to collect, bind, the
columns included in the parentheses.

For example, cbind(Data1$X3Perc, Data1$X2Perc, Data1$FTPerc) tells R to bind together
columns X3Perc (the average percentage of three point shots made in a game), X2Perc (the
average percentage of two point shots made in a game), and FTPerc (the average percentage
of free throw shorts made in a game). If we ran just this line of code, R would just print the
470 rows of these three columns. (I demonstrate this below, but truncate the output to only
the first 20 rows to save space.)

cbind(Data1$X3Perc, Data1$X2Perc, Data1$FTPerc)[1:20,]

[,1] [,2] [,3]
[1,] 0.000 0.654 0.603
[2,] 0.308 0.647 0.781
[3,] 0.292 0.619 0.803
[4,] 0.409 0.424 0.844
[5,] 0.238 0.625 0.500
[6,] 0.335 0.476 0.886
[7,] 0.083 0.516 0.692
[8,] 0.390 0.536 0.894
[9,] 0.350 0.521 0.826
[10,] 0.288 0.587 0.628
[11,] 0.406 0.506 0.831
[12,] 0.000 0.431 0.667
[13,] 0.143 0.500 1.000
[14,] 0.344 0.514 0.832
[15,] 0.348 0.625 0.656
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[16,] 0.446 0.539 0.714
[17,] 0.231 0.701 0.821
[18,] 0.250 0.500 1.000
[19,] 0.000 0.751 0.610
[20,] 0.395 0.546 0.770

This is because we did not define it as an object like we discussed earlier. If, however, I
nested the above code within the rowMeans() function, it would perform rowMeans()on the
three columns. In short, this would produce, for each row of data, the average percentage of
successful scoring plays across the season:

Data1$ScoreMean <- rowMeans(cbind(Data1$X3Perc, Data1$X2Perc, Data1$FTPerc),
na.rm=TRUE)

Here, R will create a new column of data called ScoreMean in Data1, and it will be the mean
of the three variables. The na.rm= part is how you tell R what to do with missing data.
(Unfortunately, the na.rm= code is not universal. One of the growing pains of learning R will
be learning package/function specific coding for missing data). By setting na.rm=TRUE, we
are telling R to remove all missing data before computing the mean. If the above code ran
successfully, the first six rows of your data would look like:

Data1$ScoreMean <- rowMeans(cbind(Data1$X3Perc, Data1$X2Perc, Data1$FTPerc), na.rm=TRUE)
head(Data1)

Rk Player Pos Age FcBc Tm Conf G GS MP FG FGPerc X3P X3Perc X2P
1 81 Clint Capela C 28 FC ATL 1 65 63 26.6 5.4 0.653 0.0 0.000 5.4
2 372 Onyeka Okongwu C 22 FC ATL 1 80 18 23.1 4.0 0.638 0.1 0.308 3.9
3 96 John Collins PF 25 FC ATL 1 71 71 30.0 5.1 0.508 1.0 0.292 4.1
4 213 Aaron Holiday PG 26 BC ATL 1 63 6 13.4 1.5 0.418 0.6 0.409 0.9
5 276 Vit Krejci PG 22 BC ATL 1 29 0 5.7 0.5 0.405 0.2 0.238 0.3
6 536 Trae Young PG 24 BC ATL 1 73 73 34.8 8.2 0.429 2.1 0.335 6.1
X2Perc FT FTPerc ORB DRB TRB AST STL BLK TOV PF PTS NegPlay ScoreMean

1 0.654 1.2 0.603 4.0 7.1 11.0 0.9 0.7 1.2 0.8 2.1 12.0 2.9 0.4190000
2 0.647 1.9 0.781 2.7 4.5 7.2 1.0 0.7 1.3 1.0 3.1 9.9 4.1 0.5786667
3 0.619 2.0 0.803 1.1 5.4 6.5 1.2 0.6 1.0 1.1 3.1 13.1 4.2 0.5713333
4 0.424 0.4 0.844 0.4 0.8 1.2 1.4 0.6 0.2 0.6 1.3 3.9 1.9 0.5590000
5 0.625 0.0 0.500 0.2 0.7 0.9 0.6 0.2 0.0 0.2 0.6 1.2 0.8 0.4543333
6 0.476 7.8 0.886 0.8 2.2 3.0 10.2 1.1 0.1 4.1 1.4 26.2 5.5 0.5656667

Note, there is now two new columns in Data1: NegPlay and ScoreMean.

It is also worth noting here that if there are a lot of variables to average together, the above
code can get unwieldy to write. There are, fortunately, shortcuts that can be used, I discuss
one shortcut next.
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2.2.4.3 Referencing Columns using Column Numbers

One shortcut to coding in R is to reference the columns in a function using column numbers
rather than column names. Although this option is not available for all function, it is helpful
for any function in which the coding requires the names of columns.

In addition, this does require knowing the column numbers associated with your variable
names–which can be difficult for larger data sets. However, when you become proficient at
using this approach to coding, you will see your coding moves quickly. Indeed, in the remaining
parts of the book series, I will make use of this shortcut whenever possible.

The first step in using the shortcut would be to determine the column numbers associated
with the variables in the data frame using the colnames() function. By putting the name of
the data frame in this function, R will print the names and numbers of each column.

colnames(Data1)

[1] "Rk" "Player" "Pos" "Age" "FcBc" "Tm"
[7] "Conf" "G" "GS" "MP" "FG" "FGPerc"
[13] "X3P" "X3Perc" "X2P" "X2Perc" "FT" "FTPerc"
[19] "ORB" "DRB" "TRB" "AST" "STL" "BLK"
[25] "TOV" "PF" "PTS" "NegPlay" "ScoreMean"

Admittedly, this is not the most visually appealing way to display this information, but you
do get the critical information needed. On the left, in brackets, are the column numbers that
start each row of variables, so columns 1 through 6 are in the [1] row followed by columns 7
through 12 in the [7] row, and so on.

From this output, then, we know in which column number is each variable: variable Player
is in column 2, and variable Conf is in column 7. With this information, we can use column
numbers from a data frame to reference columns/variables in our functions.

For example, suppose we wanted to rerun the rowMeans() function from above, but using
the column numbers. The code would replace the cbind() part of the code with the code
to reference specific columns. To do that, we need to use the [ , ] next to the data frame
names.

Recall that data frames are just matrices of data. Data matrices are oriented in Row x Column
structure. The left and right sides of the comma in the [ , ] code represent rows of the data
frame and columns of a data frame, respectively. As such, putting value numbers to the left
and right of the comma will reference specific cells of the matrix. For example:

1. Data1[10,5] will print the data point in row 10, column 5 of the data frame Data1

Data1[10,5]
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[1] "FC"

2. Data1[5,10] will print the data point in row 5, column 10 of the data frame Data1

Data1[5,10]

[1] 5.7

In addition to a single row or column, you can specify sets by including more than one number
to the left and/or right of the column. When the row/column numbers are consecutive, you
can indicate them using the :. So, for instance, Data1[1:20,10:15] will print the first 20
rows on columns 10 through 15:

Data1[1:20, 10:15]

MP FG FGPerc X3P X3Perc X2P
1 26.6 5.4 0.653 0.0 0.000 5.4
2 23.1 4.0 0.638 0.1 0.308 3.9
3 30.0 5.1 0.508 1.0 0.292 4.1
4 13.4 1.5 0.418 0.6 0.409 0.9
5 5.7 0.5 0.405 0.2 0.238 0.3
6 34.8 8.2 0.429 2.1 0.335 6.1
7 13.7 1.7 0.395 0.1 0.083 1.6
8 19.5 3.4 0.465 1.4 0.390 2.0
9 31.7 5.7 0.461 1.5 0.350 4.2
10 14.9 2.3 0.491 0.4 0.288 1.8
11 27.9 5.1 0.447 2.7 0.406 2.4
12 12.0 1.1 0.417 0.0 0.000 1.1
13 4.1 0.6 0.391 0.1 0.143 0.5
14 36.4 8.3 0.464 1.8 0.344 6.5
15 13.9 1.5 0.485 0.6 0.348 1.0
16 30.5 3.6 0.476 2.3 0.446 1.3
17 11.7 1.6 0.665 0.0 0.231 1.6
18 7.4 0.5 0.458 0.0 0.250 0.4
19 23.5 3.6 0.747 0.0 0.000 3.6
20 25.9 2.7 0.454 1.5 0.395 1.3

If the rows and/or columns are not consecutive, you have to “collect” them using the c()
function nested within the [ , ]. To display rows, 2, 4, 6, 8, and 10, and columns 1, 3, 5,
7, and 9, you would have to “collect” them together as c(2,4,6,8,10) and c(1,3,5, 7,9)
within the [ , ]:

Data1[c(2,4,6,8,10), c(1,3,5,7,9)]
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Rk Pos FcBc Conf GS
2 372 C FC 1 18
4 213 PG BC 1 6
6 536 PG BC 1 73
8 182 SF FC 1 12
10 244 SF FC 1 6

Finally, and most useful for nesting this coding into other functions, if either side of the comma
is left blank, R will retain all entries for whichever side is left blank. So, Data1[,1:5] will
print columns 1 through 5 for all 470 entries, and Data1[1:20,] will print all 29 columns for
the first 20 rows.

Therefore, if we want to perform an operation, say computing the mean from three columns,
for all entries in the data frame, we can leave the left side of the comma blank, and just indicate
the column numbers we average.

Taking the above example of the mean of X3Perc, X2Perc, and FTPerc, we can include columns
14, 16, and 18 into the right side [ , ] and left the left side blank to apply to all rows:

Data1$ScoreMean2 <- rowMeans(Data1[,c(14,16,18)], na.rm=TRUE)

This code creates a new column of data in Data1 named NASMean2. If we use the coding we
just learned, we can print the first 15 rows of data (i.e, 1:15) on the last two columns (i.e.,
29:30)8, and see that the two columns, ScoreMean and ScoreMean2, are identical for each
row:

Data1[1:15,29:30]

ScoreMean ScoreMean2
1 0.4190000 0.4190000
2 0.5786667 0.5786667
3 0.5713333 0.5713333
4 0.5590000 0.5590000
5 0.4543333 0.4543333
6 0.5656667 0.5656667
7 0.4303333 0.4303333
8 0.6066667 0.6066667
9 0.5656667 0.5656667
10 0.5010000 0.5010000
11 0.5810000 0.5810000
12 0.3660000 0.3660000

8I know that these are the two columns of interest without needing to rerun colnames(Data1) because when
I ran it earlier, there were 29 columns with ScoreMean being the last column. As such, ScoreMean2 has to
be the 30th column.
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13 0.5476667 0.5476667
14 0.5633333 0.5633333
15 0.5430000 0.5430000

Admittedly, the example of nesting the referencing of column numbers rather than names was
not a large reduction in actual coding. Keep in mind, though, that running operations on large
numbers of variables is more common than not, so using this approach will become helpful
quickly. As noted earlier, I use this approach to coding whenever possible moving forward.

2.2.4.4 Creating Factors

Factors are nominal variables that are used to group similar categories of observations together,
such as experimental conditions or demographic groups. When variables are set as factors, R
will treat them as groups in analyses. To create factors, we would either need to add a new
variable to the data frame as a factor or turn an existing variable into a factor. In both cases
we would use the factor() function. In the former case, we would first add a variable; in the
latter case we would convert an existing variable into a factor.

If we are adding a new variable to our data frame that is a factor, we first add a column of
data to our data frame that contains the value designating to which level of the factor each
row belongs:

Example1$Cond <- c(1,1,1,1,1,2,2,2,2,2)

The above code adds to the data frame Example the column named Cond that is a series of 1s
and 2s–the first five rows are 1s and the second five rows are 2s. To convert these 1s and 2s to
a factor with two levels, we use the factor() function. As with other functions, though, you
have to assign it an object. In this case, we are going to take the existing column, Cond and
reassign it as a factor.

Example1$Cond <- factor(Example1$Cond, levels = c(1,2), labels = c("Control",
"Treatment"))

Here we see that the Cond variable in Example1 will be converted to a factor from the exist-
ing data in Example1$Cond. In addition, there are two levels= to this factor, collected as
c(1,2). Finally, we are assigning labels= for levels 1 and 2, to c("Control", "Treatment")
, respectively.

Example1$Cond <- c(1,1,1,1,1,2,2,2,2,2)
Example1$Cond <- factor(Example1$Cond, levels = c(1,2), labels = c("Control", "Treatment"))

We now see that the data frame we created has five control and five treatment labels.

Example1
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PTG SS Cond
1 71 16 Control
2 67 18 Control
3 69 30 Control
4 56 18 Control
5 53 24 Control
6 52 12 Treatment
7 59 30 Treatment
8 70 32 Treatment
9 75 26 Treatment
10 53 14 Treatment

Some notes on the code. First, in both the levels= and labels= parts, the entries have to be
“collected” together using the c() function. Second, the labels= input have to be in quotation
makes for the text to be accepted. Finally, if your data already contain a column of data for
the factor, you can just use the factor() part of the example.

As a hypothetical example, suppose your data set contained responses to a gender identity
question. Further suppose that respondents were given one of four options to select: 1) male;
2) female; 3) non-binary; 4) self-described. To ensure that this variable is treated as a factor
in R you would need to use the factor() function:

Data$GenID <- factor(Data$GenID, levels=c(1,2,3,4), labels=c("Male", "Female",
"Non-Binary", "Self.Desc")

This code would convert the entries of 1, 2, 3, and 4 to labels of “Male,” “Female,” “Non-
Binary,” and “Self.Desc,” respectively, and treat the GenID variable as a factor.

2.2.4.5 Saving R Objects

The last basic operation discussed here is how to save objects in your R environment into your
working directory. You may do this to save the output of an analysis you ran, such as a table
of descriptive statistics, correlation matrices, and/or coefficients. You may also alter a data
frame (e.g., making new variables), and want to save the data after the alterations.

To save an object in R, you use the write.table() function. Because we are saving an object
out of the R environment, we do not need to assign this function to an object–rather we can
just run the line of code directly, and R will save the object to our working directory. To
use the write.table() function, you need to tell R three things: (1) the name of the object
to save, (2) the name of the file, with extension, you want to give this object, and (3) what
delimiter (recall, a delimiter is a chracter used to seperate values in a file) to use to separate
the values in the data file. As noted above, I like to use commas to separate values as these
files tend to read well across software platforms.
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For example, suppose we wanted to save the data frame Data1 after computing the sum scores
and the mean scores. Having set our working directory earlier, we can simply specify the object
name to save, the file name we want to give it, and the fact that it is a comma separated values
file:

write.table(Data1, "Dataset 1--NEW.csv", sep=",")

This code tells R to save the object Data1 as "Dataset 1--NEW.csv", as a comma separated
values file, in the working directory. Note that the file name is in quotation makes and
includes the file extension (i.e., .csv). Also note that the delimiter is also in quotation makes
(i.e., =",").

3 Univariate Statistical Analyses

When I first started to use R, I went to a colleague, Jay, and ask for help. At this time, R was
relatively new, so there were not a ton of packages available, but there was a package written
to run multidimensional item response theory. The fact that a free program was avaialble
to run this analysis was exciting because, at the time, the only program available for it was
rather expensive. The specifics of this analysis/technique is not important. What is important
is what Jay said to me when I walked into his office to ask for help. He commented that no
one ever asked him for help with how to use R to get descriptive statistics; people always want
to jump into the complex analyses without learning the basics first.

Jay’s comment proved prescient insofar as, despite his dedicated help, I never fully understood
what I was doing in R.9 However, once I learned how to use R to produce descriptive statistics
and conduct univariate statistical analyses, I was able to rapidly expand my use of R to
the more complex applications. As such, although your research and/or consulting might
necessitate more advanced statistical methods, I encourage you to work through these next
few sections slowly to fully grasp how to get R to produce the output from univariate statistics.
Once you have a grasp of these, you will find the next volumes considerably easier to follow.

Before turning to these analyses, I want to remind you that we will be covering how to produce
to the output for each of these, but not necessarily elaborating in depth the interpretation of
each. I leave the detailed interpretation of the output to other textbooks. Here, I will explain
how to code the analysis in R to produce the output for interpretation. Also, whenever possible,
I rely on existing packages to produce output rather than trying to individually code functions.
Whereas some instructors may view this as a disservice to students who may better appreciate
statistics by coding the analysis themselves, rather than relying on others’ coding, the goal of
these volumes is to help individuals transition to using R.

9Full disclosure–there are days when I still don’t think I know what I’m doing…
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3.1 About the Data Sets

Throughout these volumes, I make use of existing data sets available online, from my own
research papers, or data that I simulate to demonstrate some technique. In each case, I’ll note
the source of the data. Although this means you get to practice on real data, it also means
that you may have to load into the R environment different data sets for different analyses.
It also means that not all of the analyses we perform will be statistically significant–that’s
not how real data work; real data fail sometimes (read: most of the time). Furthermore, I’ll
explain or describe each data set each time, but admittedly only briefly.

To demonstrate univariate statistics we will use the end of season player statistics for National
Basketball Association (NBA) players in the 2022-2023 season for those players who played
in at least ten games.10 In addition to truncated game statistics, I added a column of data
indicating if the player plays in a back court versus front court position (i.e., BcFc), and if
the team played for a team in the Eastern Conference, Western Conference, or multiple teams
(i.e., Conf).11

Knowing that we already set a working directory, we start by importing this data file into R
and assigning it an object–for simplicity, we can name the object bball.

bball <- read.csv("BBall 22-23 Working.csv", header=TRUE)

We now have an object in our R environment named bball that is a data frame of 470 rows
(players) by 27 columns (variables/player statistics). The table below briefly explains each
variable in the data set.12

10These data were obtained from Basketball Reference (https://www.basketball-reference.com/leagues/NBA_
2023_per_game.html) retrieved 1/18/2024.

11For readers unfamiliar with the NBA and/or Basketball I will provide a brief overview of these two variables.
First, back court versus front court can, in an admittedly oversimplification, designate positions on the
basketball court that have, traditionally, played closer to the scoring basket (i.e., front court) versus those
that play further way from the scoring basket (i.e., back court). Front court positions include the Small
Forward, Power Forward, and Center; the back court positions include the Shooting Guard and Point Guard.

The 30 teams in the NBA are divided into two subgroups of 15 teams, known as Conferences, for the
purposes of rank ordering teams for positions in the NBA end of season Playoff Tournament. Ten teams
from each conference make the final playoff brackets (with four teams in each conference needing to play
in an entry sub-tournament known as the play-in tournament). Some players changed teams in the middle
of the season, and this change could have been within or across conferences. As such, these players are
indicated as a different group.

12If you are not a basketball fan some of these variables may seem confusing. Fortunately, you do not need to
really like or understand basketball to use these data in this demonstration. Just follow along, and trust
me that the analyses make at least a little sense. The only things you really need to know about basketball
are (1) the Chicago Bulls are the best basketball team in all the land, and (2) Michael Jordan is the best
basketball player of all time.

If you are an avid basketball fan, you may find some of the comparisons/“research questions” we run a
little wanting. Go with it as we are just trying to demonstrate the techniques, not break into basketball
analytics to predict the best basketball player or team–indeed, we established that the answer to these
questions are (1) Michael Jordan and (2) the Chicago Bulls, respectively. We can still analyze the data,
though.

26

https://www.basketball-reference.com/leagues/NBA_2023_per_game.html
https://www.basketball-reference.com/leagues/NBA_2023_per_game.html


Table 1: Brief Descriptions of Variables in “BBall 22-23 Working.csv” Data File. Data from
the 2022-2023 NBA season.

Column Number Variable Name Brief Description
1 Rk Player ID based on last name alphabetizing.
2 Player Name of player.
3 Pos Player primary position: C-Center,

PF-Power Forward, SF-Small Forward,
SG-Shooting Guard, PG-Point Guard.

4 Age Player age during season.
5 FcBc Whether player’s primary position was front

court (FC) or back court (BC) position.
6 Tm Player team: TOT representing total across

multiple teams.
7 Conf Player’s team as Eastern (1) or Western (2)

conference, or played across multiple teams
(3).

8 G Total games played in during season.
9 GS Total games in which player started the

game in season.
10 MP Total minutes player played in season.
11 FG Average number of field goals made by

player in season.
12 FGPerc Average percentage of field goals made by

player in season.
13 X3p Average number of 3-point shots made by

player in season.
14 X3Perc Average percentage of 3-point shots made

by player in season.
15 X2p Average number of 2-point shots made by

player in season.
16 X2Perc Average percentage of 2-point shorts made

by player in season.
17 FT Average number of free throws made by

player in season.
18 FTPerc Average percentage of free throws made by

player in season.
19 ORB Average number of offensive rebounds by

player in season.
20 DRB Average number of defensive rebounds by

player in season.
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Column Number Variable Name Brief Description
21 TRB Average number of total rebounds by player

in season.
22 AST Average number of assists per game by

player in season.
23 STL Average number of steals per game by

player in season.
24 BLK Average number of blocks per game by

player in season.
25 TOV Average number of turnovers per game by

player in season.
26 PF Average number of personal fouls per game

by player in season.
27 PTS Average number of points scored per game

by player in season.

3.2 Descriptive Statistics

Descriptive statistics are used to get a sense of your data. Typical descriptive statistics in-
clude central tendency and variability, and are helpful for things like data cleaning, checking
assumptions, and giving readers a sense of your data.

Producing descriptive statistics in R is straightforward thanks to the describe() and
describeBy() functions in the psych package. Whereas the describe() function produces
the descriptive statistics for all referenced variables, describeBy() subsets the descriptive
statistics by some grouping variable–that is, you can produce descriptive statistics separately
for different groups (e.g., conditions of an experiments, gender, etc.).

With our data in R, we can use the different describe() functions in the psych package. First,
we’ll use describe() to ask for the full list of descriptive statistics. To use this function, we
need to specify the variables we want to describe.

describe(bball$PTS, na.rm=TRUE)

Here, we are asking for the descriptive statistics for just the PTS variable. We are also telling
R to remove missing values before computing the descriptive statistics. Before producing the
output, I will share four variations of this code:

1) describe(bball[,27], na.rm=TRUE)

2) describe(cbind(bball$PTS, bball$TOV, bball$MP), na.rm=TRUE)

3) describe(bball[,c(27,25,10)], na.rm=TRUE)

4) describe(bball, na.rm=TRUE)
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Variation #1 of the code does the same as the original code, but does so by referencing a
specific column of data, rather than referring to a specific variable name. As such, the original
code and variation #1 will produce the same output: the descriptive statistics for PTS.

Variations #2 and #3 do the same thing: they both produce descriptive statistics for three
different variables: PTS, TOV, and MP. Whereas Variation #2 references the specific variable
names, Variation #3 references the specific columns. Note that Variation #2 nests the cbind()
function within the describe() function–this tells R to bind the columns that follow together.
In Variation #3, this is accomplished by nesting the c() function inside of the describe()
function–this tells R to collect/combine the three (or however many) variables together.

Finally, Variation #4 will print the descriptive statistics for every column in the data frame.
When the number of columns in the data frame is relatively small Variation #4 might be the
best approach; however, this variation becomes cumbersome when the number of variables to
analyze is large (as is the case here, so we will not produce the actual output for Variation
#4).

describe(bball$PTS, na.rm=TRUE)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 470 9.86 6.87 7.95 8.94 5.41 0.4 33.1 32.7 1.16 0.77 0.32

describe(bball[,27], na.rm=TRUE)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 470 9.86 6.87 7.95 8.94 5.41 0.4 33.1 32.7 1.16 0.77 0.32

describe(cbind(bball$PTS, bball$TOV, bball$MP), na.rm=TRUE)

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 470 9.86 6.87 7.95 8.94 5.41 0.4 33.1 32.7 1.16 0.77 0.32
X2 2 470 1.17 0.81 0.90 1.06 0.59 0.0 4.1 4.1 1.21 0.94 0.04
X3 3 470 21.07 9.01 20.20 21.09 11.19 2.5 37.4 34.9 0.04 -1.14 0.42

describe(bball[,c(27,25,10)], na.rm=TRUE)

vars n mean sd median trimmed mad min max range skew kurtosis se
PTS 1 470 9.86 6.87 7.95 8.94 5.41 0.4 33.1 32.7 1.16 0.77 0.32
TOV 2 470 1.17 0.81 0.90 1.06 0.59 0.0 4.1 4.1 1.21 0.94 0.04
MP 3 470 21.07 9.01 20.20 21.09 11.19 2.5 37.4 34.9 0.04 -1.14 0.42

29



As the output shows, there is a lot of descriptive statistics produced for these data, and most
of these are self-explanatory based on the column names. Two pieces of output that might not
be clear are trimmed and mad. The former refers to the trimmed mean of the variable. How
much the mean is trimmed is something that you can set within the describe() function–
see the help files associated with this function for how to do this. mad refers to the median
absolute deviation from the median.

To pare down the amount of output, you can add fast=TRUE to your describe() function.
Setting this to TRUE, note all letter capitalized in TRUE, the function will only print n, mean,
sd, min, max, and range:

describe(bball[,10:15], na.rm=TRUE, fast=TRUE)

vars n mean sd median min max range skew kurtosis se
MP 1 470 21.07 9.01 20.20 2.50 37.40 34.90 0.04 -1.14 0.42
FG 2 470 3.62 2.43 3.00 0.20 11.20 11.00 1.05 0.42 0.11
FGPerc 3 470 0.47 0.08 0.46 0.15 0.82 0.67 0.70 2.03 0.00
X3P 4 470 1.06 0.88 0.90 0.00 4.90 4.90 0.99 0.92 0.04
X3Perc 5 462 0.33 0.11 0.35 0.00 1.00 1.00 -0.37 6.71 0.01
X2P 6 470 2.56 2.00 1.90 0.10 10.50 10.40 1.32 1.53 0.09

In this output, I have requested the truncated amount of descriptive statistics for mp, FG,
FGPerc, X3Pp, X3Perc, and X2p. Note that in the code I specified all six columns by using the
: between the first and last column to display; using this type of coding will tell R to apply
the function across all columns from the first number through the last number. As such, this
short hand of coding can only be used for consecutive columns.

Finally, we can produce descriptive statistics for different subgroups in our data using the
describeBy() function. This function works similarly to the describe() function with the
added code for indicating the variable name for the different groups:

describeBy(bball[,c(10:15)], group=bball$Pos, fast=TRUE)

Descriptive statistics by group
group: C

vars n mean sd median min max range skew kurtosis se
MP 1 99 18.57 8.57 18.30 2.50 34.60 32.10 0.26 -1.09 0.86
FG 2 99 3.29 2.22 2.60 0.20 11.00 10.80 1.16 1.04 0.22
FGPerc 3 99 0.57 0.10 0.55 0.25 0.82 0.57 -0.13 0.74 0.01
X3P 4 99 0.37 0.53 0.10 0.00 2.30 2.30 1.64 1.97 0.05
X3Perc 5 91 0.28 0.20 0.33 0.00 1.00 1.00 0.67 1.94 0.02
X2P 6 99 2.92 2.05 2.50 0.20 10.00 9.80 1.21 1.33 0.21
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------------------------------------------------------------
group: PF

vars n mean sd median min max range skew kurtosis se
MP 1 90 21.46 8.71 20.70 5.60 37.40 31.80 0.08 -1.16 0.92
FG 2 90 3.62 2.53 2.80 0.50 11.20 10.70 1.28 0.88 0.27
FGPerc 3 90 0.48 0.06 0.47 0.38 0.66 0.28 0.61 -0.14 0.01
X3P 4 90 0.95 0.69 0.80 0.00 3.00 3.00 0.91 0.28 0.07
X3Perc 5 90 0.32 0.09 0.34 0.00 0.44 0.44 -1.92 4.28 0.01
X2P 6 90 2.66 2.21 1.80 0.30 10.50 10.20 1.52 1.94 0.23
------------------------------------------------------------
group: PG

vars n mean sd median min max range skew kurtosis se
MP 1 82 23.28 9.43 24.35 5.20 37.40 32.20 -0.20 -1.26 1.04
FG 2 82 4.18 2.78 3.70 0.50 10.90 10.40 0.70 -0.60 0.31
FGPerc 3 82 0.43 0.05 0.43 0.24 0.57 0.32 -0.27 1.29 0.01
X3P 4 82 1.36 1.01 1.15 0.00 4.90 4.90 1.10 1.07 0.11
X3Perc 5 82 0.34 0.07 0.34 0.00 0.47 0.47 -1.77 6.25 0.01
X2P 6 82 2.82 2.10 2.10 0.10 9.50 9.40 1.00 0.40 0.23
------------------------------------------------------------
group: SF

vars n mean sd median min max range skew kurtosis se
MP 1 89 22.03 8.86 20.80 3.90 36.90 33.00 -0.13 -1.08 0.94
FG 2 89 3.60 2.33 3.10 0.20 10.10 9.90 0.95 0.20 0.25
FGPerc 3 89 0.44 0.07 0.45 0.15 0.57 0.42 -1.43 4.33 0.01
X3P 4 89 1.31 0.87 1.10 0.00 4.40 4.40 0.87 0.77 0.09
X3Perc 5 89 0.34 0.07 0.35 0.00 0.45 0.45 -1.90 5.37 0.01
X2P 6 89 2.29 1.87 1.70 0.10 8.30 8.20 1.28 1.14 0.20
------------------------------------------------------------
group: SG

vars n mean sd median min max range skew kurtosis se
MP 1 110 20.57 9.02 20.05 4.1 36.40 32.30 0.07 -1.09 0.86
FG 2 110 3.50 2.30 3.05 0.4 10.00 9.60 0.98 0.20 0.22
FGPerc 3 110 0.44 0.05 0.44 0.3 0.59 0.29 -0.13 0.73 0.00
X3P 4 110 1.33 0.83 1.30 0.0 3.60 3.60 0.49 -0.51 0.08
X3Perc 5 110 0.35 0.08 0.37 0.0 0.50 0.50 -1.82 5.17 0.01
X2P 6 110 2.18 1.70 1.70 0.1 7.80 7.70 1.26 1.03 0.16

Here, we see that the basic descriptive statistics for MP, FG, FGPerc, X3Pp, X3Perc, and X2p
are printed separately for each of the five different positions. If we omitted fast=TRUE, then
we would print the full set of descriptive statistics for each group. Like the variables to be
analyzed, we can specify the grouping variable using the column number referencing method,
group=bball[,3]. Finally, you can look at descriptive statistics across collections of group-
ing variables by including more than one grouping variable nesting c() functions within the
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describeBy() function. For instance, this code will produce the basic descriptive statistics
for the cross sections of Conf and FcBc:

describeBy(bball[,c(10:15)], group=bball[,c(5,7)], fast=TRUE)

Descriptive statistics by group
FcBc: BC
Conf: 1

vars n mean sd median min max range skew kurtosis se
MP 1 81 22.93 9.44 24.70 4.10 36.80 32.70 -0.26 -1.17 1.05
FG 2 81 3.90 2.43 3.50 0.50 10.00 9.50 0.67 -0.64 0.27
FGPerc 3 81 0.44 0.04 0.43 0.34 0.57 0.23 0.25 0.39 0.00
X3P 4 81 1.36 0.91 1.30 0.00 4.00 4.00 0.53 -0.34 0.10
X3Perc 5 81 0.34 0.08 0.36 0.00 0.44 0.44 -2.06 5.48 0.01
X2P 6 81 2.55 1.79 1.90 0.30 7.30 7.00 0.91 -0.19 0.20
------------------------------------------------------------
FcBc: FC
Conf: 1

vars n mean sd median min max range skew kurtosis se
MP 1 120 21.25 9.04 19.90 2.50 37.40 34.90 0.06 -1.11 0.83
FG 2 120 3.59 2.50 2.80 0.20 11.20 11.00 1.04 0.39 0.23
FGPerc 3 120 0.49 0.09 0.48 0.18 0.78 0.59 0.25 1.20 0.01
X3P 4 120 0.88 0.82 0.70 0.00 3.60 3.60 0.86 0.11 0.07
X3Perc 5 116 0.30 0.14 0.33 0.00 1.00 1.00 0.22 4.16 0.01
X2P 6 120 2.72 2.20 1.80 0.10 10.50 10.40 1.22 1.12 0.20
------------------------------------------------------------
FcBc: BC
Conf: 2

vars n mean sd median min max range skew kurtosis se
MP 1 81 21.00 9.34 20.20 4.40 36.30 31.90 0.05 -1.19 1.04
FG 2 81 3.89 2.77 3.10 0.40 10.90 10.50 0.89 -0.23 0.31
FGPerc 3 81 0.44 0.05 0.44 0.30 0.54 0.24 -0.33 -0.24 0.01
X3P 4 81 1.31 0.96 1.00 0.00 4.90 4.90 1.23 1.60 0.11
X3Perc 5 81 0.35 0.07 0.36 0.12 0.50 0.38 -1.07 1.82 0.01
X2P 6 81 2.59 2.09 2.00 0.10 9.50 9.40 1.20 1.01 0.23
------------------------------------------------------------
FcBc: FC
Conf: 2

vars n mean sd median min max range skew kurtosis se
MP 1 120 20.89 8.90 20.80 3.90 35.70 31.80 -0.09 -1.20 0.81
FG 2 120 3.61 2.35 2.90 0.20 11.10 10.90 1.07 0.51 0.21
FGPerc 3 120 0.50 0.10 0.49 0.15 0.82 0.67 0.32 1.47 0.01

32



X3P 4 120 0.87 0.83 0.70 0.00 4.40 4.40 1.33 2.00 0.08
X3Perc 5 118 0.32 0.13 0.35 0.00 1.00 1.00 0.10 6.72 0.01
X2P 6 120 2.74 2.03 2.30 0.20 9.60 9.40 1.35 1.62 0.19
------------------------------------------------------------
FcBc: BC
Conf: 3

vars n mean sd median min max range skew kurtosis se
MP 1 30 20.45 8.50 18.20 7.20 37.40 30.20 0.36 -0.98 1.55
FG 2 30 3.22 2.10 2.45 0.50 9.90 9.40 1.27 1.42 0.38
FGPerc 3 30 0.43 0.06 0.43 0.24 0.59 0.35 -0.27 2.40 0.01
X3P 4 30 1.40 0.77 1.20 0.30 3.10 2.80 0.51 -0.71 0.14
X3Perc 5 30 0.37 0.04 0.37 0.26 0.50 0.24 0.97 2.58 0.01
X2P 6 30 1.82 1.53 1.40 0.10 6.80 6.70 1.59 2.15 0.28
------------------------------------------------------------
FcBc: FC
Conf: 3

vars n mean sd median min max range skew kurtosis se
MP 1 38 17.73 7.35 15.50 6.50 35.60 29.10 0.61 -0.61 1.19
FG 2 38 2.83 1.75 2.40 0.80 10.30 9.50 2.03 6.17 0.28
FGPerc 3 38 0.48 0.08 0.46 0.36 0.68 0.32 0.65 -0.40 0.01
X3P 4 38 0.79 0.65 0.75 0.00 2.50 2.50 0.74 -0.29 0.11
X3Perc 5 36 0.33 0.11 0.34 0.00 0.59 0.59 -1.14 2.53 0.02
X2P 6 38 2.04 1.57 1.55 0.20 8.30 8.10 1.93 4.69 0.25

Here you see the descriptive statics within the six combinations that are produced when you
cross the two levels of FcBc with the three levels of Conf.

3.3 Variances, Covariances, and Correlations

Having produced descriptive statistics, we can now turn to measures of association–namely,
correlations. In addition to computing the correlation between two variables, we can compute
variance of a variable, and the covariance of two variables.

To compute the variance of a variable, we use the var() function. To utilize this function, we
need to specify a column of data for which we would like to compute the variance. In addition,
we need to specify what to do with missing values: na.rm=; setting this to TRUE will remove
missing data before computing the variance. To compute the variance of average points per
game scored in the season, we would include bball$PTS in the var() function.

var(bball$PTS, na.rm=TRUE)

[1] 47.19653
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To compute the covariance of two variables, we use the cov() function. Here, we need to specify
two variables on which to compute the covariance, and a use= command. The use= code tells
R what observations to use. Specifying use="pairwise.complete.obs", in quotation marks,
tells R to engaged in pairwise deletion–this means any case for which both variables are non-
missing data will be used to compute the covariance. If we want to compute the covariance
of average points per game scores in a season and the average minutes a game played in a
season:

cov(bball$PTS, bball$MP, use="pairwise.complete.obs")

[1] 54.27879

Finally, we can compute correlations among variables in multiple ways, but I’ll demonstrate
two specific approaches: cor.test(), and rcorr() from the Hmisc pacakge (Harrell, 2022).

The cor.test() function requires specifying (1) the two variables to be correlated, (2) and
alternative= representing if the null hypothesis significance testing should be two sided,
less than 0, or greater than 0, and, among other specifications not detailed here, (3) the
method= as either a Pearson correlation, or a Kendall or Spearman rank correlation. For our
demonstration, we will simply compute the Pearson Product Moment Correlation between PTS
and MP with a "two.sided" test:

cor.test(bball$PTS, bball$MP, alternative = "two.sided", method = "pearson")

Pearson's product-moment correlation

data: bball$PTS and bball$MP
t = 39.486, df = 468, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8543198 0.8963478
sample estimates:

cor
0.8770007

Here, we see that the correlation between average minutes a game played and average points
per game score is, as one might expect, fairly strong, r (468) = .88, p < .001. If we wanted to
use a one-tailed test, we can change "two.sided" to either "greater" or "less". In addition,
we could change from "pearson" to either "kendall" or "spearman". It is important, of
course, for you, as the analyst, to know which correlation coefficient is most appropriate for
your data.
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Most researchers are less interested in computing single bivariate correlations; rather, they
want to compute a full matrix of correlations among their variables. The rcorr() function
from the Hmisc package (Harrell, 2022) can be used for this. This function will compute
all sets of bivariate correlations among the columns of a matrix. To that end, the rcorr()
function requires specifying a matrix format of your data–this can be achieved by wrapping the
rcorr() function around the as.matrix() function. This latter function will tell R to convert
the data included within the parentheses to a matrix format. Other than specifying the matrix
of data to analyze, you will need to tell the rcorr() function what type= of correlation to
run, "pearson" or "spearman".

Let’s compute the correlation matrix for the variables starting from MP to PTS. Based on the
code above about referencing columns, we know that this would be columns 10 through 27.
Therefore, we can tell R to compute the correlations of columns in bball 10-27 as a matrix.
First, though, we have to install13 and load the Hmisc library.

library(Hmisc)

rcorr(as.matrix(bball[,10:27]), type="pearson")

MP FG FGPerc X3P X3Perc X2P X2Perc FT FTPerc ORB DRB TRB
MP 1.00 0.88 0.14 0.67 0.16 0.78 0.11 0.72 0.26 0.33 0.72 0.65
FG 0.88 1.00 0.21 0.63 0.13 0.94 0.13 0.87 0.24 0.31 0.73 0.65
FGPerc 0.14 0.21 1.00 -0.28 -0.11 0.38 0.79 0.17 -0.28 0.63 0.43 0.52
X3P 0.67 0.63 -0.28 1.00 0.40 0.32 -0.17 0.45 0.42 -0.22 0.25 0.12
X3Perc 0.16 0.13 -0.11 0.40 1.00 -0.01 -0.15 0.09 0.29 -0.28 -0.05 -0.12
X2P 0.78 0.94 0.38 0.32 -0.01 1.00 0.23 0.86 0.11 0.47 0.77 0.73
X2Perc 0.11 0.13 0.79 -0.17 -0.15 0.23 1.00 0.09 -0.21 0.46 0.32 0.39
FT 0.72 0.87 0.17 0.45 0.09 0.86 0.09 1.00 0.26 0.26 0.62 0.54
FTPerc 0.26 0.24 -0.28 0.42 0.29 0.11 -0.21 0.26 1.00 -0.28 -0.01 -0.10
ORB 0.33 0.31 0.63 -0.22 -0.28 0.47 0.46 0.26 -0.28 1.00 0.69 0.84
DRB 0.72 0.73 0.43 0.25 -0.05 0.77 0.32 0.62 -0.01 0.69 1.00 0.97
TRB 0.65 0.65 0.52 0.12 -0.12 0.73 0.39 0.54 -0.10 0.84 0.97 1.00
AST 0.72 0.72 -0.01 0.51 0.13 0.64 -0.08 0.65 0.23 0.05 0.46 0.36
STL 0.74 0.62 0.03 0.46 0.10 0.55 -0.03 0.51 0.19 0.20 0.44 0.39
BLK 0.34 0.33 0.50 -0.08 -0.13 0.44 0.38 0.28 -0.18 0.64 0.59 0.65
TOV 0.79 0.87 0.13 0.51 0.09 0.83 0.02 0.81 0.19 0.25 0.66 0.58
PF 0.72 0.60 0.32 0.28 0.01 0.60 0.26 0.49 0.06 0.55 0.69 0.69
PTS 0.88 0.99 0.16 0.68 0.17 0.91 0.09 0.91 0.29 0.25 0.69 0.60

AST STL BLK TOV PF PTS
MP 0.72 0.74 0.34 0.79 0.72 0.88
FG 0.72 0.62 0.33 0.87 0.60 0.99

13As I’ve already installed the packages we need for this series of books, I skip the actual code for installing any
packages moving forward. Refer to the previous sections on how to install packages if you need a refresher.
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FGPerc -0.01 0.03 0.50 0.13 0.32 0.16
X3P 0.51 0.46 -0.08 0.51 0.28 0.68
X3Perc 0.13 0.10 -0.13 0.09 0.01 0.17
X2P 0.64 0.55 0.44 0.83 0.60 0.91
X2Perc -0.08 -0.03 0.38 0.02 0.26 0.09
FT 0.65 0.51 0.28 0.81 0.49 0.91
FTPerc 0.23 0.19 -0.18 0.19 0.06 0.29
ORB 0.05 0.20 0.64 0.25 0.55 0.25
DRB 0.46 0.44 0.59 0.66 0.69 0.69
TRB 0.36 0.39 0.65 0.58 0.69 0.60
AST 1.00 0.67 0.05 0.84 0.41 0.72
STL 0.67 1.00 0.20 0.61 0.53 0.62
BLK 0.05 0.20 1.00 0.24 0.53 0.29
TOV 0.84 0.61 0.24 1.00 0.60 0.87
PF 0.41 0.53 0.53 0.60 1.00 0.57
PTS 0.72 0.62 0.29 0.87 0.57 1.00

n
MP FG FGPerc X3P X3Perc X2P X2Perc FT FTPerc ORB DRB TRB AST STL BLK

MP 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
FG 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
FGPerc 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
X3P 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
X3Perc 462 462 462 462 462 462 462 462 459 462 462 462 462 462 462
X2P 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
X2Perc 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
FT 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
FTPerc 467 467 467 467 459 467 467 467 467 467 467 467 467 467 467
ORB 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
DRB 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
TRB 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
AST 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
STL 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
BLK 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
TOV 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
PF 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470
PTS 470 470 470 470 462 470 470 470 467 470 470 470 470 470 470

TOV PF PTS
MP 470 470 470
FG 470 470 470
FGPerc 470 470 470
X3P 470 470 470
X3Perc 462 462 462
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X2P 470 470 470
X2Perc 470 470 470
FT 470 470 470
FTPerc 467 467 467
ORB 470 470 470
DRB 470 470 470
TRB 470 470 470
AST 470 470 470
STL 470 470 470
BLK 470 470 470
TOV 470 470 470
PF 470 470 470
PTS 470 470 470

P
MP FG FGPerc X3P X3Perc X2P X2Perc FT FTPerc ORB

MP 0.0000 0.0020 0.0000 0.0007 0.0000 0.0221 0.0000 0.0000 0.0000
FG 0.0000 0.0000 0.0000 0.0038 0.0000 0.0048 0.0000 0.0000 0.0000
FGPerc 0.0020 0.0000 0.0000 0.0217 0.0000 0.0000 0.0001 0.0000 0.0000
X3P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
X3Perc 0.0007 0.0038 0.0217 0.0000 0.7593 0.0017 0.0462 0.0000 0.0000
X2P 0.0000 0.0000 0.0000 0.0000 0.7593 0.0000 0.0000 0.0160 0.0000
X2Perc 0.0221 0.0048 0.0000 0.0002 0.0017 0.0000 0.0599 0.0000 0.0000
FT 0.0000 0.0000 0.0001 0.0000 0.0462 0.0000 0.0599 0.0000 0.0000
FTPerc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0160 0.0000 0.0000 0.0000
ORB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DRB 0.0000 0.0000 0.0000 0.0000 0.3267 0.0000 0.0000 0.0000 0.7647 0.0000
TRB 0.0000 0.0000 0.0000 0.0107 0.0084 0.0000 0.0000 0.0000 0.0305 0.0000
AST 0.0000 0.0000 0.7929 0.0000 0.0050 0.0000 0.0693 0.0000 0.0000 0.3265
STL 0.0000 0.0000 0.4652 0.0000 0.0302 0.0000 0.4874 0.0000 0.0000 0.0000
BLK 0.0000 0.0000 0.0000 0.0727 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000
TOV 0.0000 0.0000 0.0056 0.0000 0.0675 0.0000 0.6032 0.0000 0.0000 0.0000
PF 0.0000 0.0000 0.0000 0.0000 0.8451 0.0000 0.0000 0.0000 0.1791 0.0000
PTS 0.0000 0.0000 0.0007 0.0000 0.0003 0.0000 0.0499 0.0000 0.0000 0.0000

DRB TRB AST STL BLK TOV PF PTS
MP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FGPerc 0.0000 0.0000 0.7929 0.4652 0.0000 0.0056 0.0000 0.0007
X3P 0.0000 0.0107 0.0000 0.0000 0.0727 0.0000 0.0000 0.0000
X3Perc 0.3267 0.0084 0.0050 0.0302 0.0048 0.0675 0.8451 0.0003
X2P 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
X2Perc 0.0000 0.0000 0.0693 0.4874 0.0000 0.6032 0.0000 0.0499
FT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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FTPerc 0.7647 0.0305 0.0000 0.0000 0.0000 0.0000 0.1791 0.0000
ORB 0.0000 0.0000 0.3265 0.0000 0.0000 0.0000 0.0000 0.0000
DRB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TRB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AST 0.0000 0.0000 0.0000 0.3201 0.0000 0.0000 0.0000
STL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BLK 0.0000 0.0000 0.3201 0.0000 0.0000 0.0000 0.0000
TOV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PF 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PTS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The first thing you may notice that R is telling you that certain objects are “…masked from…”
then a package. What is happening here is that the Hmisc package has functions with the
same name as psych, describe(), and the base package, format.pval() and unit(). In this
case, if you call any of these three functions, it will use the function for Hmisc because it is
the most recent package loaded.14

Next, you’ll see that R prints the correlation matrix (as a full square matrix, with 1.0 along
the diagonals) for all 18 variables. This is followed by a matrix of sample sizes used to compute
each variable. If there were no missing data, this matrix of sample sizes would reduce to a
single number representing the sample size used to compute all of the correlations. Lastly,
you’ll see the p-values associated with each bivariate correlation.

So, for example, the bivariate correlation between average minutes played per game, MP, and
average number of turnovers committed a game, TOV, is r = .79, which was computed using 470
respondents, and the p-value associated with this correlation is p < .0001. Knowing that the
degrees of freedom for the statistical test of whether or not a Pearson correlation is significantly
different than 0 is 𝑑𝑓 = 𝑁 − 2, we can report that r(468) = .79, p < .0001.

3.4 Regression

From computing measures of association, we can shift to conducting regression analyses. Re-
gression is a technique wherein one or more variables are used to predict standing on another
variable. For instance, we might use a combination of minutes played (MP), average rebounds
per game (TRB), and average assists per game (AST) to predict points per game (PTS). To do
this, we will make use of the linear model, lm(), function. We will first discuss simultaneous
entry regression, followed by hierarchical entry. Finally, I will show you how to integrate
categorical variables into regression models using dummy coding.

14If you want to use a function from a specific package, you can tell R to call a specific package and use the
function from that package by including the name of the package, followed by ::, and then the function as
you would normally specify it. So, for instance, if I wanted to use the psych package to compute descriptive
statistics on PTS, I would use psych::describe(bball$PTS).
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3.4.1 Simultaneous Entry

To use this function, one must specify a linear equation relating the outcome variable to
the predictor(s). This is accomplished by specifying the outcome variable, the thing to be
predicted, on the left of a ~, and the predictor variables to the right of it. In R, we use the ~
symbol as an equal sign therein telling R that the variable to the left is equal to the expression
of variables on the right.

PTS ~ MP + TRB + AST

Note that the predictors are specified as additive. Therefore, R tries to compute the linear
model in which average points per game equals, ~, the linear, weighted sum of average minutes
played, average total rebouds per game, and average assists per game. For simple linear
regression (i.e., regression with only one predictor), we would just include only one predictor
variable to the right of the ~.

In addition to specifying the linear equation, we need to tell R what data frame contains
our variables, data=, and how to handle missing data, na.action=, wherein na.exlude will
remove cases for which there is missing data on any of the variables. Lastly, we need to define
the lm() output as an object so that we can review the summary() of the output:

Model1 <- lm(PTS ~ MP + TRB + AST, data=bball, na.action=na.exclude)

After running the above line of code, your R environment should not change, except for a new
object named Model1. To print the output, we utilize the summary() function:

summary(Model1)

Call:
lm(formula = PTS ~ MP + TRB + AST, data = bball, na.action = na.exclude)

Residuals:
Min 1Q Median 3Q Max

-11.0922 -1.7311 -0.0342 1.5452 13.1040

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.50637 0.38531 -9.100 < 2e-16 ***
MP 0.50470 0.02877 17.541 < 2e-16 ***
TRB 0.27679 0.08277 3.344 0.000893 ***
AST 0.76582 0.10972 6.980 1.02e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 3.139 on 466 degrees of freedom
Multiple R-squared: 0.7926, Adjusted R-squared: 0.7913
F-statistic: 593.6 on 3 and 466 DF, p-value: < 2.2e-16

Here, we see that all three predictors are positively and significantly related to average points
per game. The “Estimate” column provides the unstandardized regression coefficients for
each predictor and the intercept. The “Std. Error” column presents the standard errors for
each estimate. Finally, the “t value” and “Pr (>|T|)” columns present the t-values and p-
values for each predcitor (wherein each t value is distributed on N-k-1 degrees of freedom, and
N represents sample size and k represents number of predictors and is printed in the lower
portion of the output).

We also see that 79.3% of the variance in average points per game is predicted by the three
variables. This is displayed in the latter part of the output under “Multiple R-squared.” We
also see the F value associated with this R2 in the “F-statistic” section. As such, we can see
that the overall model is significant, R2=.793, F (3, 466) = 593.60, p < .001.

For publication and presentation purposes, it is helpful to present the standardized regression
coefficients, or 𝛽-values, and the confidence intervals for the regression coefficients. To do
this, we can utilize the lm.beta() function from the QuantPsyc package (Fletcher, 2022), and
the confint() function from base R. To do this, we simply specify the name of the object
containing the output from the lm(), in this case Model1. In addition, for the confint()
function, we need to specify a level= corresponding to the width of the confidence interval
with .95 being the standard in the behavioral sciences referencing a 95% confidence interval
for the raw regression coefficients.

library(QuantPsyc)

lm.beta(Model1)

MP TRB AST
0.66184330 0.09424634 0.21532764

confint(Model1, level=.95)

2.5 % 97.5 %
(Intercept) -4.2635211 -2.7492197
MP 0.4481614 0.5612425
TRB 0.1141308 0.4394409
AST 0.5502190 0.9814196

Here we see that the lm.beta() produces three standardized regression coefficients for the
three predictors, and the confint() function produces the 95% confidence intervals for the
unstandardized regression coefficients.
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3.4.2 Hierarchical Entry

Whereas simultaneous entry regression allows you to assess the predictive capacity of a set of
variables together, hierarchical entry allows you to add variables/predictors sequentially, and
assess the improvement in model fit due to the inclusion of the new predictor.

The only real difference between hierarchical entry and simultaneous entry regression is that the
former estimates more than one model. Otherwise, both approaches use the same structures
of lm(), summary(), lm.beta(), and confint().

An added benefit of using this hierarchical or sequential entry approach is that we can compute
an index of improved model fit, namely the change in model R2, or ΔR2. This index tells you
the additional amount of variance in an outcome variable predicted with the inclusion of
additional predictor(s). At the time of writing this edition of the book, there is no function
written to automatically compute ΔR2, so I will quickly write one here for you to use moving
forward. Note, that I do not discuss in detail how to write function in R, but please contact
me if you have any questions.

Delta.R2 <- function(x, y){
test <- anova(y,x)
ifelse(test$Df[2] < 0, print("Your model comparison ANOVA will result in negative degrees of freedom. Check your model entry order to ensure the model with fewer predictors (i.e. more parsimonious model) is entered as y."),print(":)"))
Delta.R2 <- summary(x)$r.squared - summary(y)$r.squared
R2 <- paste("Delta R^2 =", round(Delta.R2, digits=3))
ANO <- paste("F(", test$Df[2], ",", test$Res.Df[2],")", "=", round(test$F[2], digits=3), "p =", format(test$`Pr(>F)`[2], format="e", digits=3))
print(R2)
print(ANO)
}

To be sure, we do not need this function to compute the change in R2, nor to test if the change
is significant, but this function will make it easier in the future.

Suppose that a researcher is interesting in answering the question of whether or not average
total rebounds per game, TRB, and average assists per game, AST, significantly add to the
prediction of average points per game, PTS, above and beyond simply average minutes played,
MP. In short, do all three predictors do better than just the one?

Earlier, we ran the model with all three predictors, so we kind of already know the answers.
However, if we suppose we didn’t, we would start by running a model predicting PTS from just
MP–a simple linear regression.

ModelMP <- lm(PTS ~ MP, data=bball, na.action=na.exclude)
summary(ModelMP)

Call:
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lm(formula = PTS ~ MP, data = bball, na.action = na.exclude)

Residuals:
Min 1Q Median 3Q Max

-9.3872 -1.9246 -0.1052 1.6807 14.1938

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.23342 0.38804 -10.91 <2e-16 ***
MP 0.66877 0.01694 39.49 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.304 on 468 degrees of freedom
Multiple R-squared: 0.7691, Adjusted R-squared: 0.7686
F-statistic: 1559 on 1 and 468 DF, p-value: < 2.2e-16

Here we see that average minutes played per game positively and significantly predicts average
points per game, b = .67, t (468) = 39.49, p < .001, and that average minutes played per game
along accounts for about 77% of the variance in average points per game, R2 = .77, F (1, 468)
= 1559.00, p < .001.

To assess if TRB and AST add to the prediction of average points per game, we run a model
with all three predictors (the same model as above, but we will rerun it anyways). In addition,
we can use the Delta.R2() function we wrote above to test to see if the addition of the two
predictors significantly improves the model fit, and how much additional variance in average
points per game is predicted by the additional two variables. To utilize this function, we
specify the model with more predictors first, followed by model with fewer predictors.

ModelAll <- lm(PTS ~ MP + TRB + AST, data=bball, na.action=na.exclude)
Delta.R2(ModelAll, ModelMP)

[1] ":)"
[1] "Delta R^2 = 0.023"
[1] "F( 2 , 466 ) = 26.374 p = 1.41e-11"

Here we see that the inclusion of the additional two predictors increases the amount of variance
predicted in average points per game by about 2.3%. We see that this is a significant increase
insofar as the F value is significantly different from 0, F (2, 466) = 26.37, p < .001. We can
now, like above, use the summary(), lm.beta(), and confint() function as we did above to
interpret either or both models–since we did this earlier, we won’t redo it here.
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Before moving on to how to include categorical predictors in regression, I want to note a few
things about using hierarchical entry regression with which you are likely already familiar.
First, the demonstration showed how to add two predictors to a single predictor. However,
any number of predictors (within reason) can be add to a model with any number of existing
predictors (e.g., adding three new variables to a model that already has four variables in it).
Second, the order of entry into the hierarchical entry will affect the interpretation of results.
Variables entered into the model first get the account for more variance than later variables–
the difference being attributable to multicollinearity (Dalal, 2023). Lastly, also because of
multicollinearity, the amount of additional variance accounted for by a predictor or set of
predictors is not necessarily the same as the amount of variance accounted for by a predictor
alone (Dalal, 2023).

3.4.3 Categorical Predictors in Regression

Categorical predictors can be readily included in regression models by converting the nominal
codes to dummy, effect, or orthogonal codes. Although the discussion of each of these types of
codes is beyond the scope of this volume, I will show you have to create either dummy codes
or effect codes. Then, I will show you have to include these into regression models. To simplify
the discussion, we will utilize a simple linear regression model to see if the average number of
foul committed per game, PF, is significantly predicted by whether or not a player is a front
court or back court player, FcBc. In short, the question is if certain positions on the court
lead to committing more fouls than other positions.

First, we have to convert the nominal codes of FC and BC to either dummy codes or effect
codes. Dummy codes are created by specifying a reference group and assigning them a “0” on
each code. All other groups are given a code of “1” in one code, and a “0” on each other code.
Effect codes are created by specifying a reference group and assigning them a “-1” on each
code. All other groups are given a code of “1” in one code, and a “0” on each other code.15

To do this, we can use R’s conditional statements function, ifelse(). To use this function,
we specify three things: (1) the conditional test to evaluate, (2) what happens if the test is
passed, and (3) what happens if the test is failed. In this case, the test will be if a case has
a specific nominal code (e.g., FC). If the test is passed, this case will get a “1” on the dummy
code; otherwise, the row will get a “0.” For effect coding, if the test is passed, they’ll get a “1”
in the effect code, otherwise a “-1” in the effect code.

Note that the test in the conditional contains == to signify if the entry in FcBC is equal to
"FC". The conditional formatting requires the use of two equal signs - this is an R specific rule
- otherwise, the expression cannot be validated. Some other expressions that you might use in
the conditional statements include greater (>) or less (<) than, greater/less than or equal to
(>=, <=), not equal to (!=).

15Recall that with dummy, effect, or orthogonal codes, you will need to create j - 1 codes, where j is the number
of categories in the nominal variable.
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bball$D1 <- ifelse(bball$FcBc == "FC", 1,0)
bball$E1 <- ifelse(bball$FcBc == "FC", 1, -1)
head(bball)[25:29]

TOV PF PTS D1 E1
1 0.8 2.1 12.0 1 1
2 1.0 3.1 9.9 1 1
3 1.1 3.1 13.1 1 1
4 0.6 1.3 3.9 0 -1
5 0.2 0.6 1.2 0 -1
6 4.1 1.4 26.2 0 -1

Notice that we have a created two new variables in the bball data frame, D1 and E1. We
can now include one of these in a regression model to assess if front court versus back court
position predicts average fouls committed per game using the lm() function.

ModelD <- lm(PF ~ D1, data=bball, na.action=na.exclude)
ModelE <- lm(PF ~ E1, data=bball, na.action=na.exclude)
summary(ModelD)

Call:
lm(formula = PF ~ D1, data = bball, na.action = na.exclude)

Residuals:
Min 1Q Median 3Q Max

-1.69568 -0.51406 -0.01406 0.48594 1.90432

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.61406 0.05086 31.733 < 2e-16 ***
D1 0.28162 0.06614 4.258 2.49e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7048 on 468 degrees of freedom
Multiple R-squared: 0.0373, Adjusted R-squared: 0.03524
F-statistic: 18.13 on 1 and 468 DF, p-value: 2.491e-05

summary(ModelE)
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Call:
lm(formula = PF ~ E1, data = bball, na.action = na.exclude)

Residuals:
Min 1Q Median 3Q Max

-1.69568 -0.51406 -0.01406 0.48594 1.90432

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.75487 0.03307 53.069 < 2e-16 ***
E1 0.14081 0.03307 4.258 2.49e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7048 on 468 degrees of freedom
Multiple R-squared: 0.0373, Adjusted R-squared: 0.03524
F-statistic: 18.13 on 1 and 468 DF, p-value: 2.491e-05

Here we see that front court versus back court position does predict average fouls committed
per game. You also see that, except for the regression coefficient, the results are the same. This
is because with dummy coding the regression coefficient reflects the mean difference between
the comparison group and the group coded “1” on that dummy code for the outcome variable.
As such, we see that the average number of fouls committed per game is about .28 fouls per
game higher for front court players than back court players. The regression coefficient for
the intercept represents the mean of the outcome variable for the reference group–the average
number of fouls per game for back court players is about 1.61 fouls per game.

The regression coefficient for the effect coding represents the difference in the mean on the
outcome variable for the group coded “1” and the grand mean. As such, we see that the
average number of fouls committed per game is about .14 fouls per game higher than the
grand mean. The regression coefficient for the intercept represents the grand mean of the
outcome variable–the average number of fouls committed per game across all players in about
1.75 fouls per game.

Although a simplistic example, this demonstration can be readily extended to situations in
which more than two categories. Also, the categorical predictors can be included in a multiple
regression with continuous variables as well. And, in a later volume, we will see the use of
categorical variables in moderated regression.

45



3.5 t-Tests

When needing to compare one or two means, we can turn to t-tests. We will cover how
to conduct single sample t-tests, independent samples t-tests, and matched/paired-samples
t-tests. Fortunately, conducting all three utilizes the same function, t.test().

3.5.1 Single Sample t-Test

Single sample t-tests are used to compare a sample mean value to some comparison value. For
example, we might compare the average score on a test for a class of students to say 70%, and
determine if the class, on average, scored significantly differently than 70%.

To demonstrate a single sample t-test, suppose we are interested in knowing if the average
per game field goal percent across the players is significantly different from 50%. A field goal
percent of 50% means a player makes as many shots as he misses, so if in the 2022-2023 season
NBA players had, on average, a per game field goal percentage significantly greater than 50%,
then they made more shots than they missed.

To test this, we will use the t.test() function to specify the variable in the sample, and we
have to specify the population mean, mu=, referring to the comparison value.

t.test(bball$FGPerc, mu=.50)

One Sample t-test

data: bball$FGPerc
t = -7.5639, df = 469, p-value = 2.082e-13
alternative hypothesis: true mean is not equal to 0.5
95 percent confidence interval:
0.4631390 0.4783418
sample estimates:
mean of x
0.4707404

Here, we see that the average per game field goal percentage in the ’22-’23 season was about
47% (mean of x = .471). We also see that the this percentage is significantly less than 50%,
t (469) = -7.56, p < .001. We can use the lsr (Navarro, 2015) package to compute the Cohen’s
D using the cohensD() function. Like the single sample t-test, we simply need to specify the
variable in our data frame, and the population mean.

library(lsr)
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cohensD(bball$FGPerc, mu=.5)

[1] 0.3488955

As such, we see that the average per game field goal percentage, 𝑥 = .47, is significantly less
than 50%, t(469) = -7.56, p < .001, Cohen’s D = .35.

3.5.2 Independent Samples t-Test

An independent samples t-Test is used to compare the means on a variable between two
different groups. To demonstrate this, we can look to see if the average number of personal fouls
committed per game, PF, differs significantly between front court players and back court players.
This is the same research question we asked earlier when including categorical predictors in
regression; we will just use a t-Test this time. We can do this in two ways: specifying columns
or formula-based. For consistency with lm(), I will demonstrate the formula based approach.

Like the lm() function, we need to specify the outcome variable to the left of the ~ and the
variable associated with the different groups to the right. We also need to specify the data
frame, whether or not the test is a paired= FALSE, and whether or not the variances are equal,
var.equal =.

To determine if the variances are equal, we can use Levene’s test for homogeneity of variances
from the car package (Fox & Weisberg, 2019), leveneTest(). Fortunately, the specification
for this function is the same as lm(): outcome on the left of the ~, grouping variable on the
right, and a data frame.

library(car)

leveneTest(PF ~ FcBc, data=bball)

Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 1.5109 0.2196
468

Based on the Levene’s test, we see that the variances are not significantly different from each
other, F (1, 468) = 1.51, p = .220. As such, we can specify var.equal = TRUE. We can also
use the cohensD() function, with the same formula specification, to compute the effect size of
the mean difference.
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t.test(PF ~ FcBc, data=bball, var.equal=TRUE)

Two Sample t-test

data: PF by FcBc
t = -4.2583, df = 468, p-value = 2.491e-05
alternative hypothesis: true difference in means between group BC and group FC is not equal to 0
95 percent confidence interval:
-0.4115799 -0.1516620
sample estimates:
mean in group BC mean in group FC

1.614062 1.895683

cohensD(PF ~ FcBc, data=bball)

[1] 0.3995833

As we can see, there is a significant difference between front court and back court player on
their average personal fouls per game, t (468) = -4.26, p < .001, Cohen’s D = .40. We also see
that the average number of fouls per game is greater among front court players, 𝑥𝐹𝐶 = 1.90,
than back court players, 𝑥𝐵𝐶 = 1.61.

3.5.3 Paired Samples t-Test

Finally, a paired sample t-test is used to see if there is a significant difference between two
variables within people. To demonstrate this, we might assess if the average percentage of
three-point field goals made is significantly different (likely lower given they are more difficult
to make) than the average percentage of free throws made. To run this analysis, we need to
specify the two variables, not in formula notation, and specify paired = TRUE. If we want
to specify the an alternative= we can do that as well. We can also specify the cohensD()
function using the same general approach. One difference, though, is that we have to specify
the method="paired".

t.test(bball$X3Perc, bball$FTPerc, paired=TRUE, alternative = "two.sided")

Paired t-test

data: bball$X3Perc and bball$FTPerc
t = -66.597, df = 458, p-value < 2.2e-16
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alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-0.4445771 -0.4190917
sample estimates:
mean difference

-0.4318344

cohensD(bball$X3Perc, bball$FTPerc, method="paired")

[1] 3.108469

Here we can see that there is a significant difference between the average per game percentage
of three point shots made compared to the average per game percentage of free throw shots
made, t(458) = -66.60, p < .001, Cohen’s D = 3.11.

3.6 Analysis of Variance (ANOVA)

When comparing means across three or more groups, Analysis of Variance (ANOVA) is a viable
analysis strategy.16 ANOVA compares the ratio of variance of an outcome within groups to
the variance of the outcome across groups–if the latter is larger than the former, the groups
differ more from each other than group members differ from one another.

3.6.1 One-Way ANOVA

When your study has only one factor on which three or more groups differ, a one-way ANOVA
is appropriate. For instance, suppose we think that the average percentage of two point shots
made per game differs among the basketball positions (e.g., center, point guard, etc.). In this
case, we have five groups: point guard, shooting guard, small forward, power forward, and
center.

Numerous packages allow you to conduct ANOVAs. For simplicity, I will show you have to
use to the ezANOVA() function from the ez package (Lawrence, 2016). To be sure, there are a
lot of options to specify within the ezANOVA() function; although we will cover a number of
them, we cannot cover all of them.

For an one-way ANOVA, we will need to specify five things: the data=, the dv=, the ID variable
distinguishing different cases, wid=, the between= factor, and the type= of sums of squares.17

16I note that ANOVA can be used to compare the means between two groups, but this is equivalent to a t-test,
so most people will use a t-test. As described later, if one is comparing the means across more than one
factor, a factorial ANOVA, even if there are only two groups on each factor, is necessary.

17A detailed discussion of the different types of sums of squares is beyond the scope of this volume. Interested
readers are directed to Field et al. (2012) page 475-476.
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One additional specification I will add is detailed=TRUE so that the function prints the full
ANOVA table.

Lastly, I am setting return_aov=FALSE. I am setting this to false because of a very specific
bug in the ez package that the developer has decided not to fix.18 The bigger issue, though,
is if return_aov=TRUE, there is a possibility that results will not match across functions in R
when cell sizes are unequal. Since the return_aov= aspect of the code is not necessary, we
can circumvent any issues by setting it to FALSE.

library(ez)

ezANOVA(data=bball, wid=Rk, dv=X2Perc, between=Pos, type=3, detailed=TRUE, return_aov = FALSE)

Warning: Converting "Rk" to factor for ANOVA.

Warning: Converting "Pos" to factor for ANOVA.

Warning: Data is unbalanced (unequal N per group). Make sure you specified a
well-considered value for the type argument to ezANOVA().

Coefficient covariances computed by hccm()

$ANOVA
Effect DFn DFd SSn SSd F p p<.05

1 (Intercept) 1 465 134.5030986 2.556134 24468.17412 0.000000e+00 *
2 Pos 4 465 0.8058795 2.556134 36.65046 1.209594e-26 *

ges
1 0.9813501
2 0.2397014

$`Levene's Test for Homogeneity of Variance`
DFn DFd SSn SSd F p p<.05

1 4 465 0.003435191 1.282825 0.3112981 0.8704353

Naturally, the independent variables need to be factors–we can either do that ourselves by
specifying the variables as.factor(), or allow ezANOVA() to do it automatically. The other
thing you will notice is that there is a warning about the unequal sample sizes, and that you
should make sure your type= specification is “well-considered.” Briefly, ANOVAs with unequal
sample sizes in the conditions can be problematic, and ezANOVA() is just reminding you of
that.

18This issue is described in detail here: https://github.com/jasp-stats/jasp-issues/issues/609
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As the output shows, we see that, based on Levene’s test, the variances on average percent
of two point shots made is not significantly different among the groups, F(4, 465) = .31, p >
.05. We further see that there is a significant mean difference among the groups in terms of
the average percentage of two point shots made in a game, F (4, 465) = 36.65, p < .001, and
that the effect size for this (i.e., generalized eta-squared, ges) is about 𝜂2= .24.

A follow-up question to ask is which groups are significantly different from each other? We can
determine this by using the PostHocTest() function from the DescTool package (Signorell,
2024). To use this function, we need to specify an aov model and the method=. To obtain
an aov model, we can actually rerun the ezANOVA() requesting return_aov=TRUE. To demon-
strate, I’ll rerun the ANOVA I just ran, but with three adjustments: (1) I will save the output
of the ANOVA as an object, Model2Pointers<-, and (2) I will set return_aov=TRUE to ensure
the output has an aov object for PostHocTest(). The third change I am going to make is to
ensure that Pos is a factors using the as.factor() function. I am making this third change
because the PostHocTest() function needs the between subject factors are specified as factors,
and does not do so automatically like ezANOVA().

After making these changes, I will specify PostHocTest() to run method=bonferroni cor-
rected pairwise comparisons across the different conditions of the study. You will see that
specifying the aov model in the PostHocTest() function requires referencing, using the $, the
aov part of the ezANOVA() output. This is because the output from ezANOVA() is stored as
a list in R; one of those list entries is the aov output, and this is the part we need in the
PostHocTest() function.

library(DescTools)

Model2Pointers <- ezANOVA(data=bball, wid=Rk, dv=X2Perc, between=Pos, type=3, detailed=TRUE, return_aov=TRUE)

Warning: Converting "Rk" to factor for ANOVA.

Warning: Converting "Pos" to factor for ANOVA.

Warning: Data is unbalanced (unequal N per group). Make sure you specified a
well-considered value for the type argument to ezANOVA().

Coefficient covariances computed by hccm()

PostHocTest(Model2Pointers$aov, method="bonferroni")

Posthoc multiple comparisons of means : Bonferroni
95% family-wise confidence level
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$Pos
diff lwr.ci upr.ci pval

PF-C -0.04570202 -0.076158701 -0.015245339 0.00028 ***
PG-C -0.11188630 -0.143111506 -0.080661098 < 2e-16 ***
SF-C -0.08433560 -0.114881779 -0.053789427 4.5e-13 ***
SG-C -0.10125859 -0.130228668 -0.072288504 < 2e-16 ***
PG-PF -0.06618428 -0.098108963 -0.034259601 9.4e-08 ***
SF-PF -0.03863358 -0.069894433 -0.007372733 0.00537 **
SG-PF -0.05555657 -0.085279243 -0.025833888 2.1e-06 ***
SF-PG 0.02755070 -0.004459373 0.059560771 0.15579
SG-PG 0.01062772 -0.019881979 0.041137412 1.00000
SG-SF -0.01692298 -0.046737358 0.012891393 1.00000

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, we see that centers (C) have a higher two point shot shooting percentage than any of
the other positions. Likewise, power forwards (PF) have a significantly higher two point shot
shooting percentage than small forwards (SF), shooting guards (SG), and point guards (PG).
The latter three groups do not differ significantly from each other.

Clearly, a missing piece of information are the actual average percentage of two point shots
made. To ascertain this information, we can use the describeBy() function from psych to
look at the mean two-point shot percentage across the five groups.

describeBy(x=bball$X2Perc, group=bball$Pos, fast=TRUE)

Descriptive statistics by group
group: C

vars n mean sd median min max range skew kurtosis se
X1 1 99 0.61 0.08 0.61 0.25 0.82 0.57 -0.91 3.93 0.01
------------------------------------------------------------
group: PF

vars n mean sd median min max range skew kurtosis se
X1 1 90 0.56 0.06 0.56 0.42 0.74 0.32 0.19 -0.1 0.01
------------------------------------------------------------
group: PG

vars n mean sd median min max range skew kurtosis se
X1 1 82 0.49 0.08 0.49 0.07 0.66 0.59 -2.04 10.51 0.01
------------------------------------------------------------
group: SF

vars n mean sd median min max range skew kurtosis se
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X1 1 89 0.52 0.08 0.53 0.19 0.68 0.49 -1.25 3.93 0.01
------------------------------------------------------------
group: SG

vars n mean sd median min max range skew kurtosis se
X1 1 110 0.51 0.08 0.51 0.25 0.75 0.5 -0.3 1.76 0.01

For basketball fans, this information is unlikely to be surprising given than these two positions
tend to, though not always, take most of their shots from very close to the basket.

3.6.2 Factorial ANOVA

When comparing means among groups that differ on two or more factors, you can use factorial
ANOVA. Factorial ANOVA separates the variance of an outcome variable across combinations
of levels of two or more independent variables. Fortunately, the ezANOVA() function can easily
accommodate two or more independent variables.

To demonstrate this, suppose we are interested in knowing if the average percentage of three
point shots made in a game differs between front court and back court players (FcBc) and
between eastern conference and western conference teams (Conf). The only differences in the
ezANOVA() function between one-way ANOVA and factorial ANOVA is that the between=
aspect of the code will now have to include both factors. We are also changing the outcome
variable to X3Perc.

One additional step we need to take, though, is how to handle the missing data. In particular,
there are eight players who did not attempt a three point shot all season; as such, the data
for these individuals is missing. On the one hand, we could replace the missing data with a
value, say 0, to reflect that 0% of their three point shots were made. However, this would be
inaccurate insofar as they did not attempt a shot. On the other hand, ezANOVA() does not
handle missing data well. To deal with this issue, we can create a different data frame with
just the variables of interest, then use the na.omit() function to remove (i.e, omit) anyone
with missing data on any of the variables in the new data frame.

Threes<- bball[,c(1,5,7,14)]
Threes <- na.omit(Threes)

You can see that there is a new data frame in the R environment named Threes that has 462
rows–470 original data points minus the eight players with missing data. Now we can assess
if the average percentage of three point shots made varies between front court and back court
players, by conference, and by the combination using the ezANOVA() function. You will notice
that now the between= aspect has two variables, collected within parentheses with a . before
it–the period is just an ez package specific rule.

ezANOVA(data=Threes, wid=Rk, dv=X3Perc, between=.(FcBc, Conf), type=3, detailed=TRUE, return_aov = FALSE)
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Warning: Converting "Rk" to factor for ANOVA.

Warning: Converting "FcBc" to factor for ANOVA.

Warning: "Conf" will be treated as numeric.

Warning: Data is unbalanced (unequal N per group). Make sure you specified a
well-considered value for the type argument to ezANOVA().

Coefficient covariances computed by hccm()

Warning: At least one numeric between-Ss variable detected, therefore no
assumption test will be returned.

$ANOVA
Effect DFn DFd SSn SSd F p p<.05

1 (Intercept) 1 458 5.8344607633 5.804464 460.36690132 3.371099e-71 *
2 FcBc 1 458 0.0220025431 5.804464 1.73610604 1.882917e-01
3 Conf 1 458 0.0625542108 5.804464 4.93582687 2.679351e-02 *
4 FcBc:Conf 1 458 0.0007654038 5.804464 0.06039403 8.059843e-01

ges
1 0.5012886469
2 0.0037763100
3 0.0106620110
4 0.0001318473

The first thing you will notice is that we have violated Levene’s test for homogeneity of
variances, F(5, 456) = 4.50, p < .001. You can address this violation in multiple ways (e.g.,
transformations, Welch’s F, robust standard errors), and I encourage you to evaluate the
pros and cons of each. For our purposes here, we will continue to evaluate this ANOVA,
without correcting for the violated assumption, as we are simply interested in demonstrating
the technique.

Based on the output, we see again the there is a significant difference in the percent of three
point shots made per game between front court and back court players, F (1, 456) = 10.19, p
< .001, 𝜂2 = .02. We also see, though, that there is not difference between the conferences nor
an interaction.

If the interaction were significant, however, we could follow up the ANOVA with post-hoc
tests. To do this, you can use the PostHocTest() from the DescTools package. Like earlier,
we are going to specify the ezANOVA() output as an object, Model3Pointers <-. We will also
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specify return_aov=TRUE, and set FcBc and Conf as factors. After making these changes, I
will specify PostHocTest() to run method=bonferroni corrected pairwise comparisons across
the different conditions of the study.

Threes$FcBc <- as.factor(Threes$FcBc)
Threes$Conf <- as.factor(Threes$Conf)

Model3Pointers <- ezANOVA(data=Threes, wid=Rk, dv=X3Perc, between=.(FcBc, Conf), type=3, detailed=TRUE, return_aov = TRUE)

Warning: Converting "Rk" to factor for ANOVA.

Warning: Data is unbalanced (unequal N per group). Make sure you specified a
well-considered value for the type argument to ezANOVA().

Coefficient covariances computed by hccm()

PostHocTest(Model3Pointers$aov, method="bonferroni")

Posthoc multiple comparisons of means : Bonferroni
95% family-wise confidence level

$FcBc
diff lwr.ci upr.ci pval

FC-BC -0.03117917 -0.0521012 -0.01025713 0.0036 **

$Conf
diff lwr.ci upr.ci pval

2-1 0.01664939 -0.010585582 0.04388436 0.4276
3-1 0.03436617 -0.004173835 0.07290618 0.0980 .
3-2 0.01771678 -0.020774593 0.05620815 0.8080

$`FcBc:Conf`
diff lwr.ci upr.ci pval

FC:1-BC:1 -0.036960515 -0.085144965 0.01122393 0.3612
BC:2-BC:1 0.008049383 -0.044240514 0.06033928 1.0000
FC:2-BC:1 -0.014367441 -0.062383700 0.03364882 1.0000
BC:3-BC:1 0.033797531 -0.037324418 0.10491948 1.0000
FC:3-BC:1 -0.002580247 -0.069237047 0.06407655 1.0000
BC:2-FC:1 0.045009898 -0.003174552 0.09319435 0.0912 .
FC:2-FC:1 0.022593074 -0.020916339 0.06610249 1.0000
BC:3-FC:1 0.070758046 0.002597651 0.13891844 0.0348 *
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FC:3-FC:1 0.034380268 -0.029107030 0.09786757 1.0000
FC:2-BC:2 -0.022416824 -0.070433082 0.02559944 1.0000
BC:3-BC:2 0.025748148 -0.045373800 0.09687010 1.0000
FC:3-BC:2 -0.010629630 -0.077286430 0.05602717 1.0000
BC:3-FC:2 0.048164972 -0.019876629 0.11620657 0.5592
FC:3-FC:2 0.011787194 -0.051572548 0.07514694 1.0000
FC:3-BC:3 -0.036377778 -0.118640937 0.04588538 1.0000

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From these results, we see that the average percentage of three point shots made by back court
players is significant higher, by about .03, than front court players. We further see, though,
that the three conditions for conferences do not differ, nor are there any meaningful differences
among the crossing of the two factors.19

3.6.3 Repeated Measures ANOVA

Repeated measures ANOVA is a technique used to assess if the means across three or more
measurements differ significantly from each other wherein each measurement is collected within
person. This could be, for example, measurements of the same construct at three different
times (e.g., pre test, post test, follow-up test), or three different measurements of constructs
(importantly, using the same scaling/response scale). For instance, we can assess if the average
percentage of three point shots, two point shots, and free throw shots made a game differ
significantly from each other across players in the NBA in the 2022-2023 season (we can
compare these three variables because all three are percentages).

One data pre-processing step in which we need to engage is to change the format of the data
from wide format to long format. Whereas wide format data has a row of a data frame for
each participant, long format has a row for each participant’s score on a variable.

To reshape the data, we will make use of the reshape2 package’s (Wickham, 2007) melt()
function. To utilize this function, we will specify the name of a data frame, the id= that tells
melt() what are between subject factors, and then a measured= which are the within subjects
factors. We will specify this as a new data frame.

To make things a little easier, though, we can start by creating a smaller data frame of only
the variables we need for the current analysis. We need to specify: Rk, X3Perc, X2Perc, and
FTPerc. In addition, we will specify FcBc in the new data frame because in the demonstration
of mixed-effects ANOVA below we will make sure of the same general research question, but

19You may notice that BC: 3-FC:1 comparison is significantly different from each other. We are unlikely to
interpret this, though, as the overall interaction term was not significant, and this is likely not a replicable
result.
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add a between subjects factor. Finally, we will use the the na.omit() function to remove
missing data from the data frame before reshaping it because ezANOVA() does not hanlde
missing data.20

library(reshape2)

Within <- bball[,c(1,5,14,16,18)]
Within <- na.omit(Within)
RMANOVA <- melt(data=Within, id=c("Rk","FcBc"), measured=c("X3Perc", "X2Perc", "FTPerc"))

After running these lines of code, you will see a new object in your R environment named
RMANOVA with 1377 observations on four variables–this is because each respondent has about
three rows of data each. You can see, for example, the first 21 rows of the new data frame
(sorted on Rk) shows three rows for each Rk, 1-7, with the same value for FcBc for each set of
three, but different values for X3Perc, X2Perc, and FTPerc.

RMANOVA[order(RMANOVA$Rk),][1:21,]

Rk FcBc variable value
358 1 FC X3Perc 0.269
817 1 FC X2Perc 0.564
1276 1 FC FTPerc 0.702
179 2 FC X3Perc 0.000
638 2 FC X2Perc 0.599
1097 2 FC FTPerc 0.364
195 3 FC X3Perc 0.083
654 3 FC X2Perc 0.545
1113 3 FC FTPerc 0.806
444 4 BC X3Perc 0.355
903 4 BC X2Perc 0.532
1362 4 BC FTPerc 0.812
182 5 FC X3Perc 0.353
641 5 FC X2Perc 0.591
1100 5 FC FTPerc 0.750
420 6 BC X3Perc 0.384
879 6 BC X2Perc 0.515
1338 6 BC FTPerc 0.667
222 7 BC X3Perc 0.399
681 7 BC X2Perc 0.518
1140 7 BC FTPerc 0.905

20In volume II of this series, I will show you how to use multilevel modeling to model repeated measures data
like this in which case the missing data can be handled.
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Now that we have the data in the format we need, we can use ezANOVA to run a repeated
measures ANOVA. Like one-way and factorial ANOVA, we specify the data=, dv=, detailed=,
and wid=. Rather than specifying a between=.(), though, we will specify the within=.().

ezANOVA(data=RMANOVA, dv=.(value), wid=.(Rk), within=.(variable), type=3, detailed=TRUE, return_aov=FALSE)

Warning: Converting "Rk" to factor for ANOVA.

$ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges

1 (Intercept) 1 458 405.85505 5.285220 35170.077 0 * 0.9640819
2 variable 2 916 42.80902 9.835438 1993.458 0 * 0.7389825

$`Mauchly's Test for Sphericity`
Effect W p p<.05

2 variable 0.9888574 0.07727548

$`Sphericity Corrections`
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

2 variable 0.9889802 0 * 0.9932456 0 *

From this output, we can see Mauchley’s test of sphericity is not violated, w = .99, p = .08.
We also see that there is a significant difference among the percentage of types of shots made,
F (2, 916) = 1993.46, p < .001, 𝜂2= .74.

To follow-up the significant ANOVA, we can use the pairwise.t.test() function to assess
which measurements are significantly different from each other. To use this function, we will
need to specify the outcome variable x=, the factor g=, how we want to adjust the p-values for
family-wise type I error21, p.adjust.method=, and finally we want paired=TRUE to account
for the within-person nature of the data.

pairwise.t.test(x=RMANOVA$value, g=RMANOVA$variable, p.adjust.method="bonferroni", paired=TRUE)

Pairwise comparisons using paired t tests

data: RMANOVA$value and RMANOVA$variable

21A full discussion of family-wise type I error is beyond the scope of this volume, and you are encouraged to
consult your statistics notes/textbook for a discussion. In addition, there are numerous corrections other
than the Bonferroni correction I prefer, as well as lengthy discussions on the appropriate post-hoc analyses
to follow a significant ANOVA that I encourage you to read.
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X3Perc X2Perc
X2Perc <2e-16 -
FTPerc <2e-16 <2e-16

P value adjustment method: bonferroni

The output of this function provides a matrix of p-values associated with each pairwise com-
parison, and not surprisingly, shows that each of the measurements are significantly different
from each other. As such, we can use the describeBy() function to look at the means of each
variable.

describeBy(RMANOVA$value, group=RMANOVA$variable, fast=TRUE)

Descriptive statistics by group
group: X3Perc

vars n mean sd median min max range skew kurtosis se
X1 1 459 0.33 0.11 0.35 0 1 1 -0.35 6.98 0.01
------------------------------------------------------------
group: X2Perc

vars n mean sd median min max range skew kurtosis se
X1 1 459 0.54 0.08 0.54 0.25 0.78 0.53 -0.1 0.78 0
------------------------------------------------------------
group: FTPerc

vars n mean sd median min max range skew kurtosis se
X1 1 459 0.76 0.12 0.77 0 1 1 -1.13 4.11 0.01

We see that players’ average percentage of free throws made in a game was significantly great
than, percentage of two point shots made, which was significantly greater than percentage of
three point shots made.

3.6.4 Mixed-Model ANOVA

In some instances, you might be interested in understanding how variables differ both within
a person, like a repeated-measures design, and across people, like a between-subjects design.
In these instances, you can use Mixed-Models ANOVA. For example, earlier we learned that
the average percentage of three-point, two-point, and free-throw shots made per game differ
significantly. Suppose we were also interested in whether or not these percentages differ along
with whether or not a player is a front court or back court player.

We can assess this relation by including both a within=.() and between=.() factors in the
ezANOVA() function, assuming that our data are in long format. Since we did that earlier, we
can move to modeling the mixed-model ANOVA.
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ezANOVA(data=RMANOVA, wid=.(Rk), dv=.(value), within=.c(variable), between=.c(FcBc), type=3, return_aov = FALSE, detailed=TRUE)

Warning: Converting "Rk" to factor for ANOVA.

Warning: Converting "FcBc" to factor for ANOVA.

Warning: Data is unbalanced (unequal N per group). Make sure you specified a
well-considered value for the type argument to ezANOVA().

$ANOVA
Effect DFn DFd SSn SSd F p p<.05

1 (Intercept) 1 457 3.948967e+02 5.280390 3.417698e+04 0.000000e+00 *
2 FcBc 1 457 4.830477e-03 5.280390 4.180616e-01 5.182305e-01
3 variable 2 914 4.188970e+01 9.106124 2.102277e+03 0.000000e+00 *
4 FcBc:variable 2 914 7.293141e-01 9.106124 3.660136e+01 5.113439e-16 *

ges
1 0.9648494883
2 0.0003356516
3 0.7443588921
4 0.0482483686

$`Mauchly's Test for Sphericity`
Effect W p p<.05

3 variable 0.9988409 0.7676496
4 FcBc:variable 0.9988409 0.7676496

$`Sphericity Corrections`
Effect GGe p[GG] p[GG]<.05 HFe p[HF]

3 variable 0.9988423 0.000000e+00 * 1.003225 0.000000e+00
4 FcBc:variable 0.9988423 5.300793e-16 * 1.003225 5.113439e-16
p[HF]<.05

3 *
4 *

Here we see that Mauchly’s test of sphericity is again not violated for either the main effect,
w = 1.00, p .77, nor the interaction, w = 1.00, p = .77. Interestingly, we see a main effect of
type of shot, F (2, 914) = 2102.28, p < .001, 𝜂2 = .74, but not for player position, F (1, 457)
= .42, p = .52, 𝜂2< .001. There was, however, a significant interaction between type of shot
and player positions, F (2, 914) = 36.60, p < .001, 𝜂2 = .05.

To follow up on this significant interaction, we would want to look at the simple effects. We
can do this in multiple ways including looking at the within-person effects within levels of
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the between subjects effects (i.e., repeated measures ANOVA for front court players only
and for back court players only). Alternatively, you can investigate if each of the repeated
measurements (i.e., X3Perc, X2Perc, and FTPerc) differs significantly between the levels of
the between factors variables–This would be one-way ANOVAs on each of the three repeated
measures. This latter approach is a straightfoward application of one-way ANOVA as discussed
above, so we won’t redo all of that here.

To utilize the former approach, though, we will need to subset the data using the subset()
function, specifying the original data frame and how we will subset it–namely into FC and BC
players. That is, we will make a data frame, labeled FC and BC, of the rows of data wherein
the variable FcBc == FC or BC, respectively. Note the use of == to tell R to to check to see if
the entries equal a condition–a single = will not work because of R language rules.

FC <- subset(RMANOVA, FcBc=="FC")
BC <- subset(RMANOVA, FcBc=="BC")

You will now see two new data frames in your R environment corresponding to data only for
front court players, FC, and data corresponding to only back court players , BC. With these new
data frames we can run the repeated measures ANOVA we ran above across all the players,
but for the two groups separately.

ezANOVA(data=FC, dv=value, within=.(variable), wid=Rk, type=3, return_aov = FALSE, detailed=TRUE)

Warning: Converting "Rk" to factor for ANOVA.

$ANOVA
Effect DFn DFd SSn SSd F p p<.05

1 (Intercept) 1 267 235.59151 3.218955 19541.416 1.002339e-251 *
2 variable 2 534 24.50922 6.156567 1062.924 6.557812e-187 *

ges
1 0.9617274
2 0.7233114

$`Mauchly's Test for Sphericity`
Effect W p p<.05

2 variable 0.974352 0.03156547 *

$`Sphericity Corrections`
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

2 variable 0.9749934 2.559047e-182 * 0.9820721 1.283466e-183 *

ezANOVA(data=BC, dv=value, within=.(variable), wid=Rk, type=3, return_aov = FALSE, detailed=TRUE)

Warning: Converting "Rk" to factor for ANOVA.
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$ANOVA
Effect DFn DFd SSn SSd F p p<.05

1 (Intercept) 1 190 170.26836 2.061435 15693.430 1.433710e-184 *
2 variable 2 380 19.02912 2.949557 1225.788 1.877218e-166 *

ges
1 0.9714114
2 0.7915570

$`Mauchly's Test for Sphericity`
Effect W p p<.05

2 variable 0.8783126 4.729764e-06 *

$`Sphericity Corrections`
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05

2 variable 0.891514 9.676247e-149 * 0.8993831 5.021867e-150 *

As you can see, both repeated measures ANOVAs show that the percentage of each shot made
differ significantly from each other for both groups. To further investigate this, you can use
the pairwise.t.test() function as we did above and consider using the one-way ANOVA
approach. If you do, you will see that for all three types of shots, the groups differ significantly
from each other. More specifically, whereas the back court players have a higher percentage
of three point and free throw shots made per game, the front court players have a higher
percentage of two point shots made.

3.7 Analysis of Covariance

Analysis of Covariance (ANCOVA) is similar to ANOVA in that we are interested in partition-
ing the variance in an outcome variable across levels of one or more factors. Where ANCOVA
differs is the inclusion of one or more continuous covariates. For instance, we might be inter-
ested in knowing if the average minutes played per game differs by position played. However,
we might also think that the number of minutes played is likely impacted by the number
of games started. In this case, we might want to partition the variance in average minutes
played across the different positions on the court, but control for the number of games started;
ANCOVA allows us to do this.

One issue, though, is that the ezANOVA() implementation of ANCOVA is not fully validated
yet (as of 2/9/2024). As such, we will make use of the Anova() function from the car package
(Fox & Weisberg, 2019), and the aov() function from the basic install of R. Specifically, we
will wrap the the Anova() function around the aov() function, and specify type=3, for the
sums of squares. Within the aov() function, we will specify the formula relating the outcome,
MP, to the two predictors, ~ Pos + GS, along with data=bball, and na.action=na.exclude
to handle the missing data.
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Anova(aov(MP ~ Pos + GS, data=bball, na.action=na.exclude), type=3)

Anova Table (Type III tests)

Response: MP
Sum Sq Df F value Pr(>F)

(Intercept) 10844.6 1 545.095 < 2.2e-16 ***
Pos 833.1 4 10.468 3.981e-08 ***
GS 27691.6 1 1391.893 < 2.2e-16 ***
Residuals 9231.2 464
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here we see that both the predictor, Pos, and the covariate, GS, significantly predict the average
number of minutes played in a game during the 2022-2023 season. Using the cor.test()
function, we can assess the relation between average number of games started and minutes
played.

cor.test(bball$MP, bball$GS, type="pearson")

Pearson's product-moment correlation

data: bball$MP and bball$GS
t = 36.084, df = 468, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8317462 0.8798647
sample estimates:

cor
0.8576719

Not surprising, starting more games on average means playing more minutes per game.

To conduct post hoc tests on Pos we have to compare the mean minutes played, adjusted
for games started. As such, functions like PostHocTest(), from the desc package, or
pairwise.t.test() will not work. Instead, we will need to use the emmeans_test() function
from the the rstatix package (Kassambara, 2023). Fortunately, utilizing this function is
straightforward; we simply need to specify data=, the formula linking the outcome to the
factors, input covariate=, specify a p.adjust.method=, and request detailed=TRUE to
ensure we get confidence intervals for the comparisons.

library(rstatix)
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emmeans_test(data=bball, formula=MP ~ Pos, covariate=GS, p.adjust.method = "bonferroni", detailed=TRUE)

# A tibble: 10 x 14
term .y. group1 group2 null.value estimate se df conf.low conf.high

* <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 GS*Pos MP C PF 0 -2.62 0.650 464 -3.90 -1.34
2 GS*Pos MP C PG 0 -4.01 0.666 464 -5.32 -2.70
3 GS*Pos MP C SF 0 -2.87 0.652 464 -4.15 -1.59
4 GS*Pos MP C SG 0 -2.90 0.618 464 -4.12 -1.69
5 GS*Pos MP PF PG 0 -1.39 0.681 464 -2.73 -0.0485
6 GS*Pos MP PF SF 0 -0.250 0.667 464 -1.56 1.06
7 GS*Pos MP PF SG 0 -0.284 0.635 464 -1.53 0.963
8 GS*Pos MP PG SF 0 1.14 0.683 464 -0.205 2.48
9 GS*Pos MP PG SG 0 1.10 0.652 464 -0.179 2.38
10 GS*Pos MP SF SG 0 -0.0335 0.637 464 -1.29 1.22
# i 4 more variables: statistic <dbl>, p <dbl>, p.adj <dbl>, p.adj.signif <chr>

From this output we see that, controlling for games started, players who play the center
position tend to play significantly fewer average minutes a game compared to all other positions.
However, the remaining four positions do not differ from each other meaningfully.

3.8 Chi-Square 𝜒2

The final analysis we will cover in volume I is 𝜒2 analysis. 𝜒2 is used to assess if categorical
variables differ significantly from each other. For instance, suppose we were interested in
knowing if the different conferences had different numbers of players at each position. We
could use a 𝜒2 test to assess if the observed number of players in each position across the two
conferences is what would be expected, where the expected amount would be the same number
across conferences.

To run this analysis, we will use the CrossTable() function from the gmodels package (Warnes,
Bolker, Lumley, & Johnson, 2022). To utilize this function, we can specify the two categorical
variables. In addition, we will request a few things: expected=TRUE will display the expected
values within each cell, chisq=TRUE will print the 𝜒2 statistic, and format="SPSS" which will
display the results in percentage format rather than proportion format. In addition to these
specification, you can also request Fisher’s Exact Test, fisher=TRUE, and/or McNemar’s test,
mcnemar=TRUE.

library(gmodels)

CrossTable(bball$Pos, bball$Conf, expected = TRUE, chisq = TRUE, format = "SPSS")
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Cell Contents
|-------------------------|
| Count |
| Expected Values |
| Chi-square contribution |
| Row Percent |
| Column Percent |
| Total Percent |
|-------------------------|

Total Observations in Table: 470

| bball$Conf
bball$Pos | 1 | 2 | 3 | Row Total |

-------------|-----------|-----------|-----------|-----------|
C | 44 | 40 | 15 | 99 |
| 42.338 | 42.338 | 14.323 | |
| 0.065 | 0.129 | 0.032 | |
| 44.444% | 40.404% | 15.152% | 21.064% |
| 21.891% | 19.900% | 22.059% | |
| 9.362% | 8.511% | 3.191% | |

-------------|-----------|-----------|-----------|-----------|
PF | 36 | 45 | 9 | 90 |

| 38.489 | 38.489 | 13.021 | |
| 0.161 | 1.101 | 1.242 | |
| 40.000% | 50.000% | 10.000% | 19.149% |
| 17.910% | 22.388% | 13.235% | |
| 7.660% | 9.574% | 1.915% | |

-------------|-----------|-----------|-----------|-----------|
PG | 37 | 32 | 13 | 82 |

| 35.068 | 35.068 | 11.864 | |
| 0.106 | 0.268 | 0.109 | |
| 45.122% | 39.024% | 15.854% | 17.447% |
| 18.408% | 15.920% | 19.118% | |
| 7.872% | 6.809% | 2.766% | |

-------------|-----------|-----------|-----------|-----------|
SF | 40 | 35 | 14 | 89 |

| 38.062 | 38.062 | 12.877 | |
| 0.099 | 0.246 | 0.098 | |
| 44.944% | 39.326% | 15.730% | 18.936% |
| 19.900% | 17.413% | 20.588% | |
| 8.511% | 7.447% | 2.979% | |
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-------------|-----------|-----------|-----------|-----------|
SG | 44 | 49 | 17 | 110 |

| 47.043 | 47.043 | 15.915 | |
| 0.197 | 0.081 | 0.074 | |
| 40.000% | 44.545% | 15.455% | 23.404% |
| 21.891% | 24.378% | 25.000% | |
| 9.362% | 10.426% | 3.617% | |

-------------|-----------|-----------|-----------|-----------|
Column Total | 201 | 201 | 68 | 470 |

| 42.766% | 42.766% | 14.468% | |
-------------|-----------|-----------|-----------|-----------|

Statistics for All Table Factors

Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 4.009374 d.f. = 8 p = 0.8562768

Minimum expected frequency: 11.86383

Not surprisingly, we see that the observed number of players at each position across the three
conferences (recall, that conference level “3” refers to players who played in both conferences
during the season) does not differ from the expected rate, 𝜒2 (8) = 4.01, p = .856. This is
because there is not necessarily a strategic reason to carry more or fewer types of players on
one’s team based on the conference one’s team is in.

For demonstration purposes, let’s look at if the counts of position, Pos, differs significantly
across front court versus back court designation, FcBc. Naturally, this comparison will show
significant differences because there are cells of this 5 x 2 matrix that have 0 entries (i.e.,
centers are not back court players). Running this analysis, though, shows you a significant
result.

CrossTable(bball$Pos, bball$FcBc, expected = TRUE, chisq = TRUE, format = "SPSS")

Cell Contents
|-------------------------|
| Count |
| Expected Values |
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| Chi-square contribution |
| Row Percent |
| Column Percent |
| Total Percent |
|-------------------------|

Total Observations in Table: 470

| bball$FcBc
bball$Pos | BC | FC | Row Total |

-------------|-----------|-----------|-----------|
C | 0 | 99 | 99 |
| 40.443 | 58.557 | |
| 40.443 | 27.932 | |
| 0.000% | 100.000% | 21.064% |
| 0.000% | 35.612% | |
| 0.000% | 21.064% | |

-------------|-----------|-----------|-----------|
PF | 0 | 90 | 90 |

| 36.766 | 53.234 | |
| 36.766 | 25.392 | |
| 0.000% | 100.000% | 19.149% |
| 0.000% | 32.374% | |
| 0.000% | 19.149% | |

-------------|-----------|-----------|-----------|
PG | 82 | 0 | 82 |

| 33.498 | 48.502 | |
| 70.227 | 48.502 | |
| 100.000% | 0.000% | 17.447% |
| 42.708% | 0.000% | |
| 17.447% | 0.000% | |

-------------|-----------|-----------|-----------|
SF | 0 | 89 | 89 |

| 36.357 | 52.643 | |
| 36.357 | 25.110 | |
| 0.000% | 100.000% | 18.936% |
| 0.000% | 32.014% | |
| 0.000% | 18.936% | |

-------------|-----------|-----------|-----------|
SG | 110 | 0 | 110 |

| 44.936 | 65.064 | |
| 94.207 | 65.064 | |
| 100.000% | 0.000% | 23.404% |
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| 57.292% | 0.000% | |
| 23.404% | 0.000% | |

-------------|-----------|-----------|-----------|
Column Total | 192 | 278 | 470 |

| 40.851% | 59.149% | |
-------------|-----------|-----------|-----------|

Statistics for All Table Factors

Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 470 d.f. = 4 p = 2.059248e-100

Minimum expected frequency: 33.49787

Here we see that the observed count of each position as either front court or back court is
significantly different than what is expected, 𝜒2 (4) = 470.00, p < .001. For example, we
would expect about 65 players who are shooting guards (SG) to be listed as front court players
(FC), but the actual count is 0. Again, although this is not a very realistic example of using a
𝜒2 analysis – given that we created one of the variables, FcBc, based on the other variable, Pos
– you can see how to use this appraoch when you are trying to assess if categorical variables
are significantly related to each other. In Volume II of this series, we discuss how to predict
categorical variables using binary and multinomial logistic regression.

4 Summary

The goal of Volume I in the Using R series is to introduce readers to what is R, and how to
use R to perform some basic univariate statistical techniques. Before moving on to Volumes
II or III, it is a good idea to have a good grasp of the topics covered in this volume. Indeed,
utilizing R to conduct path analysis, model mediations or moderations, and/or run complex
psychometric analyses will be significantly easier if you have a solid grasp of the information
presented here.

Most importantly, R is a language and skill you are trying to learn. Like any skill, you will
improve with dedicated practice. As such, utilize the accompanying data and recreate the
output in this volume on your own. Utilize variables in the data set we didn’t use to practice
these techniques. It is not important that the results are significant; rather, the goal is to
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practice producing output using these data so that you can produce the output when you are
analyzing your own data.

Finally, if you have any issues or run into any errors while using this volume, please do not
hesitate to reach out to me (ddalal@albany.edu). Given the dynamic nature of R and package
development, it is possible that updates to packages or R itself will make some of this code
not work as written. If this happens to you while using this volume, let me know and I can
update things.
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